Introduction of the Chemical Engineering BSc Program

History of Chemistry and Chemical Engineering education at the University Debrecen
The teaching of natural sciences at the University of Debrecen dates back to 1949 when the Faculty of Sciences was established in Debrecen by the Hungarian government. During the integration process of 2000 the Faculty of Sciences became one of the most populous faculties of the University of Debrecen. It cultivates mediates and teaches a number of fields of biology, physics, geography, chemistry, environmental science and mathematics at an advanced level. In these disciplines the faculty plays a major role in the eastern Hungarian region while its influence reaches beyond borders and influences Hungarian communities in the neighboring countries. The training of the students focuses on the applicability of the newest results in science and technology. Technical academic education has been improved constantly since the 1960s. Nowadays the Faculty of Engineering is the most significant center of academic education in the eastern region. During the integration process of the university the instructors of the faculty provide engineering knowledge for other faculties. Chemical engineer training at college level was started in 1999 by the cooperation of the Faculty of Sciences namely the Institute of Chemistry and the faculty of Engineering.

The prognosis of demand for graduates of the program
The setting up of the chemical engineering BSc is justified by the significant changes in the economic technical and social environment. Beside heavy industry middle sized self employed industries have appeared. This cause for the development of engineering training that includes economic knowledge necessary for the maintenance of the above mentioned economic structure. Industrial companies nowadays have concrete demand for practice oriented chemical engineers who rely on their concrete knowledge are capable of adapting and controlling complex chemical technologies. As a regional center of higher education in Hungary the University of Debrecen could train engineers for the plastic-processing, food-processing and pharmaceutical industries. Due to the change of the economic structure small and middle scale companies will emerge in the field of plastic manufacturing and the processing of agricultural products in the near future. The direct aim of the widening of the educational and training spectrum at the university is to ensure the required number of professionals in these economic sectors.

The training objective of the chemical engineering BSc is to improve the supply of engineering professionals, to keep those with a secondary school degree from migrating. Our objective is to train professionals who possess the general knowledge, technical intelligence, the basics of natural, social and engineering sciences, which are essential for the practice of the chosen profession.

It is likewise important that students acquire the most essential skills in technology and safety, environmental protection, management and social sciences. Concrete practical methods as well as the capability to apply acquired skills will help them to get accustomed to the professional requirements and standards of their future workplace. They will be capable of understanding/controlling production processes, preparing quality management and technical services and solving tasks regarding planning and development.

Through the learning of basic legal, economic and management skills, students will be trained to carry out projects concerning production and marketing. In addition, senior students will possess the necessary theoretical and practical expertise to solve problems appearing in the processes of
the chemical and related industries, can furthermore plan and operate complex technological systems and carry out research and development tasks. Graduate chemical engineers will specialize for practical task solving which means that they will be able to fill in positions of workmaster or higher at various corporations, factories and firms. The filling of these positions with well trained professionals is demanded by companies, for this reason there is a clear and real need for the training of such qualified labourers.

We are not planning to start different specializations within the chemical engineering BSc at the University of Debrecen. Relying on the acquired BSc diploma we are planning to offer a great variety of MSc courses. This way the students now can directly carry on Chemistry MSc. The training of chemists is already started at the University of Debrecen. The MSc level chemical engineer training will be started in the near future. At MSc level all three majors we will offer wide range of specializations demanded by the needs of the industry.

The curriculum and subject thematic of the chemical engineering BSc course was compiled in such a way that the outstanding students will receive in depth knowledge of mathematic, scientific and engineering disciplines during their training. The outstanding students will be guided towards doing student research at the departments.

After graduation, a first level degree chemical engineer should
- have a knowledge of relevant basic sciences (mathematics, chemistry, physics) to understand, describe and solve chemical engineering phenomena
- understand the basic principles underlying chemical engineering: material and energy balances, equilibrium, rate processes (chemical reaction, mass, heat, momentum transfer) and be able to use them to set up and to solve (analytically, numerically, graphically) a variety of chemical engineering problems
- understand the main concepts of process control
- understand the principles underlying modern methods of chemical analysis
- be able to plan, perform, explain and report simple experiments
- have a knowledge of relevant literature and data sources
- be able to take a structured approach to safety and health
- understand the concept of sustainability and be aware of the central role of chemical engineering plays in preventing and solving environmental problems
- have an ability to analyze complex problems in the choosen area of specialization
- have some experience in using appropriate computer softwares
- be able to perform appropriate design in chosen specialization
- be able to calculate process and project economics
- have some industrial experience – gained before or between the semesters

The training of chemists and chemical engineers is run through the participation and cooperation of two faculties, namely the Faculty of Science and Technology and the Faculty of Engineering of the University of Debrecen. The material requirements of the training are ensured by the infrastructure located at the Institute of Chemistry and the Faculty of Engineering. 2 members of the academy, 13 doctors of the academy, 8 candidates of science and 26 PhD doctors take part in the training.
Description of the Chemical Engineering BSc Program

Name and address of the institute: University of Debrecen, H-4032 Debrecen, Egyetem square 1., Hungary

Responsible faculty: Faculty of Science and Technology

Launching date: 1st September 2005.

Head of the Program: Prof. Dr. Sándor Kéki, Full Professor

Coordinator of the Program: Dr. György Deák, Associate Professor

1. Name of the BSc Program: Chemical Engineering

2. Acquired degree level and specialization:
 - degree level: BSc (baccalaureus, bachelor)
 - specialization: Chemical Engineer

3. Area of the Program: engineering

4. Duration of studies: 7 semesters

5. Number of required ECTS credits: 210
 - orientation: balanced (40-60 %)
 - credits gained for the thesis: 15 credits
 - minimum credits of the optional courses: 10 credits

6. Classification of the Program by the uniform classification system: 524

7. Objectives and Perspectives, acquired professional competences

 Our objective is to train professionals who possess the general knowledge, technical intelligence, the basics of natural, social and engineering sciences, which are essential for the practice of the chosen profession.

 It is likewise important that students acquire the most essential skills in technology and safety, environmental protection, management and social sciences. Concrete practical methods as well as the capability to apply acquired skills will help them to get accustomed to the professional requirements and standards of their future workplace. They will be capable of understanding/controlling production processes, preparing quality management and technical services and solving tasks regarding planning and development.

 Through the learning of basic legal, economic and management skills, students will be trained to carry out projects concerning production and marketing. In addition, senior students will possess the necessary theoretical and practical expertise to solve problems appearing in the processes of the
chemical and related industries, can furthermore plan and operate complex technological systems and carry out research and development tasks.

7.1. Acquired professional competences

a) Knowledge
- He/She has a mathematical and scientific background to understand processes in chemical and chemistry related industries.
- He/She knows the properties of the most important chemicals, their productions and applications.
- He/She knows the basic principles, the planning and controlling options in technology of chemical processes and industrial tasks.
- He/She knows the principles of instruments in chemical industries and technologies, and their operative parts, and their connections
- He/She knows the chemical methods for measurements or analysis, their principles and instrumental background, and their applicabilities
- He/She knows the chemistry and chemical technology related economical, management, environmental safety, quality assurance (QC/QA), informatics and intellectual property rules and laws.

b) Ability
- He/She capable to apply the learned methods, models and plannings of chemical technology and chemical processes through calculations.
- He/She understands and able to describe the elements of industrial and technological units, their operations including the connectivity options.
- He/She is able to apply those directives that necessary to operate instruments and control processes in a safe, cost effective way as well as avoid any problems causing health issues.
- He/She is able to follow and control chemical processes and other technological steps concerning the quality management and quality control.
- He/She is able to recognize the possible error symptoms, run diagnostic routines and offer solution based on the results.
- He/She is able to use documentation (both online or printed) related to the current field, including the scientific literature both on his/her native language and English.
- He/She is able to treat new or unknown system based on the previous studies and experiences, learn and install new technologies and recognize mechanisms related to human health.
- He/She is able to run measurements both on laboratory and scaled up systems, and evaluate the obtained data at all steps in the development.
- He/She is capable on conducting basic chemical engineering tasks.
- He/She is able to collect and organize, understand information about the health prevention, keeping track on new results, and apply them to make cost and environmentally effective, healthy working areas.

c) Attitude
- He/She makes effort to keep his/her chemical engineering knowledge updated related to his/her professional goals.
- He/She is open to accept environmentally efficient technologies, and for the application of new, innovative and advanced methods in economy.
- During everyday work and installation of new technologies he/she always concerned about sustainable development.
- He/She makes effort to improve and apply the practical methods with new results and experiences.
- During his/her work he/she committed to apply the quality concerns including the new assurances.
- He/She can collaborate with other people and discuss their opinions in problem solving processes before making new decisions.
- In each technological or laboratory steps he/she is always concerned to the current rules/laws of health prevention, safety and environmental questions.

d) Autonomy and responsibility
- Following directions he/she can work without supervision considering all quality and safety rules.
- He/She tends to establish new solutions and technologies.
- He/She can manage work and worker resources, follow and control the instruments and measuring units.
- He/She can evaluate the work of other persons and make decisions based on the outcome.
- He/She follows the personal improvements and help others to achieve their professional goals.
- He/She shares experiences with others to help them.
- He/She makes decisions according to his/her positions, makes suggestions to qualify his/her colleagues involving their promotions.

8. Characteristics of the Program
8.1. Professional characteristics
8.1.1. Scientific area, specializations:
- Natural sciences (mathematics (min. 12 credits), general chemistry (min. 15 credits), physics, biochemistry)): 40-50 credits
- Economic and human sciences (economics, business, management, civil law, ethics, quality management): 14-30 credits
- Chemical engineering (general engineering and informatics knowledge, physical chemistry, analytical chemistry, materials science, measurement, instrumentation, process control, mechanics, unit operation, chemical technology, planning of technological units and processes): 70-105 credits.
- Higher engineering (petrochemistry, plastics, environmental technology, radiochemistry, management of value creating processes, instrumental analytical methods).

8.1.2. Specialized knowledge to fulfil the demand of the chemical industry (analytical, special chemical industries, process control): 40-60 credits are recommended by the responsible institute.

8.1.3. The 14-weeks semester includes the following contact hours: 2184 obligatory + 112-140 optional = 2296-2324 hours, which equals to a workload of 23-24 hours a week.

8.3. Internship
Students have to take part in an at least 6-weeks long professional internship.

9. Physical education
Students have to take part in a physical education for at least 2 semesters. The duration of a sports lesson is 2 hours weekly.
10. Requirements of the thesis
Students have to write a thesis in the 6th and 7th semester. Writing this is the precondition of the entrance to the final exam.
The thesis is the solution of a chemical engineering task which the student should solve relying on previous studies and secondary literature under the guidance of a tutor in one semester. The thesis must prove that the author can apply the acquired theoretical knowledge.

The student can choose any topic for a thesis suggested by the faculty or in occasional cases individual topics acknowledged by the head of the department. Only those tasks can be given as thesis that can be accomplished within the allowed time limit relying on the skills acquired during the years of study. The topics of the thesis should be given in completely uniform manner and based on the system of requirements set up by the head of the institute and the head of the department responsible for the specialization. Students must be informed of the thesis topics in the first academic week of the first semester the latest. The theses are written with the close collaboration of the candidate and the supervisor.
The formal requirements of the thesis are detailed in the “manual for writing theses” which is handed out to every candidate when they decide upon their topic. The theses must be handed into the department responsible minimum ten days before the beginning of the final exam period. The thesis paper is evaluated by the supervisor who gives a grade as well as a short written comment on it. The head of the department makes a proposal for the final evaluation of the thesis based on the comments. The thesis receives a grade from the final exam committee. In case the thesis is not accepted he/she cannot carry on with the exam.

11. Final Exam
Students of the major receive an absolutorium after they have been satisfied every aspect of their educational and examinational requirements. The student can only register on the final exam if the thesis is already submitted, it is accepted and evaluated by the supervisor. The final exam is essential for anyone who wants to get a chemical engineer BSc diploma. The final exam must be taken in front of the final exam committee.

Subjects of the Final Exam:
- Physical Chemistry
- Chemical Technology
- Unit Operation

Procedure of the Final Exam
Conditions on taking part of the final exam:
- Acquired absolutorium
- Submitted thesis
- Submitted evaluation sheet for the thesis, with a minimum grade of pass (2).

Parts of the Final Exam
Drawing a question card of each topic, preparation (30 minutes)
Brief presentation of the results of the thesis (6 minutes)
Answering the questions about the thesis (6 minutes)
Answering the questions about the 3 subjects (3x6 minutes)
Evaluation of the diploma

Determination options of the grade for the BSc diploma:

- Weighted average of the overall studies at the program
- Grade of the thesis given by the final exam committee regarding the evaluation sheet
- Average of the grades received at the final exam for the three subjects

Evaluation of the diploma according to the Education and Examination Rules and Regulation of the University of Debrecen:

<table>
<thead>
<tr>
<th>Grade</th>
<th>Score Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>excellent</td>
<td>4.81 – 5.00</td>
</tr>
<tr>
<td>very good</td>
<td>4.51 – 4.80</td>
</tr>
<tr>
<td>good</td>
<td>3.51 – 4.50</td>
</tr>
<tr>
<td>satisfactory</td>
<td>2.51 – 3.50</td>
</tr>
<tr>
<td>pass</td>
<td>2.00 – 2.50</td>
</tr>
</tbody>
</table>
STRUCTURE OF THE CURRICULUM IN ECTS CREDITS

<table>
<thead>
<tr>
<th>Modul</th>
<th>Blocks of courses</th>
<th>Courses</th>
<th>Codes – credits (cr)</th>
<th>Lecture</th>
<th>Semester</th>
<th>Prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.</td>
<td></td>
</tr>
<tr>
<td>Science</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.</td>
<td></td>
</tr>
<tr>
<td>Mathematics modul</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.</td>
<td></td>
</tr>
<tr>
<td>Mathematics I.</td>
<td></td>
<td></td>
<td>TTMBE0808_EN – 5 cr</td>
<td>Zoltán Muzsnay</td>
<td>4e+3p+0</td>
<td>None</td>
</tr>
<tr>
<td>Mathematics II.</td>
<td></td>
<td></td>
<td>TTMBE0809_EN – 3 cr</td>
<td>Zoltán Muzsnay</td>
<td>2e+3p+0</td>
<td>TTMBE0808_EN TTMBG0808_EN</td>
</tr>
<tr>
<td>Physics modul</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.</td>
<td></td>
</tr>
<tr>
<td>Physics for Engineers I.</td>
<td></td>
<td></td>
<td>TTFB2111_EN – 3 cr</td>
<td>Balázs Ujvári</td>
<td>(2+1)e+ 0</td>
<td>None</td>
</tr>
<tr>
<td>Physics for Engineers II.</td>
<td></td>
<td></td>
<td>TTFB2113_EN – 3 cr</td>
<td>Balázs Ujvári</td>
<td>(2+1)e+ 0</td>
<td>TTFB2111_EN</td>
</tr>
<tr>
<td>Chemistry modul</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5.</td>
<td></td>
</tr>
<tr>
<td>General Chemistry I. (lect. and sem.)</td>
<td></td>
<td></td>
<td>TTKBE0101_EN – 4 cr</td>
<td>Gábor Bellér</td>
<td>3e+3p+0</td>
<td>None</td>
</tr>
<tr>
<td>General Chemistry II. (lab.)</td>
<td></td>
<td></td>
<td>TTKB0101_EN – 3 cr</td>
<td>Norbert Lihi</td>
<td>0+0+3p</td>
<td>TTKBE0101_EN TTKBG0101_EN</td>
</tr>
<tr>
<td>Inorganic Chemistry I.</td>
<td></td>
<td></td>
<td>TTKBE20101_EN – 3 cr</td>
<td>István Lázár</td>
<td>2e+0+0</td>
<td>TTKBE0101_EN</td>
</tr>
<tr>
<td>Inorganic Chemistry II.</td>
<td></td>
<td></td>
<td>TTKBE20201_EN – 3 cr</td>
<td>Péter Buglyó</td>
<td>2e+0+0</td>
<td>TTKBE0201_EN TTKBE0301_EN TTKBE0401_EN</td>
</tr>
<tr>
<td>Organic Chemistry I. (lect. and sem.)</td>
<td></td>
<td></td>
<td>TTKBE0301_EN – 4 cr</td>
<td>László Juhász</td>
<td>2e+1p+0</td>
<td>TTKBE0101_EN</td>
</tr>
<tr>
<td>Organic Chemistry II. (lect. and sem.)</td>
<td></td>
<td></td>
<td>TTKBE0302_EN – 4 cr</td>
<td>László Juhász</td>
<td>(2+1)e+ 3p</td>
<td>TTKBE0201_EN TTKBE0301_EN TTKBE0401_EN TTKBL0101_EN</td>
</tr>
<tr>
<td>Organic Chemistry III.</td>
<td></td>
<td></td>
<td>TTKBE0303_EN – 3 cr</td>
<td>Marietta Vágvölgyi Tőth</td>
<td>2e+0+0</td>
<td>TTKBE0302_EN</td>
</tr>
<tr>
<td>Biochemistry I.</td>
<td></td>
<td></td>
<td>TTBBE2045_EN – 3 cr</td>
<td>László Kerekgyártó</td>
<td>2e+0+0</td>
<td>TTKBE0303_EN</td>
</tr>
<tr>
<td>Economic and Human Sciences Field</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6.</td>
<td></td>
</tr>
<tr>
<td>Micro- and Macroeconomic modul (3 cr)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7.</td>
<td></td>
</tr>
<tr>
<td>Introduction to Economics</td>
<td></td>
<td></td>
<td>TTBB0001_EN – 3 cr</td>
<td>Judit Kapás</td>
<td>2e+0+0</td>
<td>None</td>
</tr>
<tr>
<td>Management and Business modul (3 cr)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Introduction to Business</td>
<td></td>
<td></td>
<td>TTBB0002_EN – 3 cr</td>
<td>András Nábrádi</td>
<td>2e+0+0</td>
<td>None</td>
</tr>
<tr>
<td>Business Law modul</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modul</td>
<td>Courses</td>
<td>Codes– credits (cr)</td>
<td>Lecturer</td>
<td>Semester (teaching hours: lectures + seminars + (laboratory) practice; type of examination: e:exam, p:practice, t: term grade, s: signature, f: parts of the final exam)</td>
<td>Prerequisites</td>
<td></td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>---</td>
<td>--------------------</td>
<td>-------------------</td>
<td>---</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Blocks of courses</td>
<td>Courses</td>
<td>Codes– credits (cr)</td>
<td>Lecturer</td>
<td>Semester (teaching hours: lectures + seminars + (laboratory) practice; type of examination: e:exam, p:practice, t: term grade, s: signature, f: parts of the final exam)</td>
<td>Prerequisites</td>
<td></td>
</tr>
<tr>
<td>Basics of Civil Law I.</td>
<td>TTBEBVVM-JA1_EN – 2 cr</td>
<td>Tamás Fézer</td>
<td>2e+0+0</td>
<td>None</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basics of Civil Law II.</td>
<td>TTBEBVVM-JA2– 2 cr</td>
<td>Tamás Fézer</td>
<td>2e+0+0</td>
<td>TTBEBVVM-JA1_EN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>History and Structure of European Union</td>
<td>TTBE0030_EN – 1 cr</td>
<td>Károly Teperics</td>
<td>1e+0+0</td>
<td>None</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Engineering Ethics</td>
<td>TTBEVEM-MK1_EN – 3 cr</td>
<td>Zsolt Tiba</td>
<td>2t+0+0</td>
<td>None</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Management of Value Creating Processes</td>
<td>TTBEVVM-KT4_EN – 3 cr</td>
<td>Miklós Pakurár</td>
<td>2e+0+0</td>
<td>TTBEBVVM-KT2_EN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physical, Analytical Chemistry and Material Science modul</td>
<td>Analytical Field</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analytical Chemistry I.</td>
<td>TTKBE0501_EN – 3 cr</td>
<td>Péter Bugló</td>
<td>2e+0+0</td>
<td>TTKBE0201_EN, TTKBE0301_EN, TTKBE0401_EN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inorganic and Qualitative Analytical Chemistry</td>
<td>TTKBL0511_EN – 4 cr</td>
<td>József Kalmár</td>
<td>0+0+4p</td>
<td>TTKBE0201_EN, TTKBE0301_EN, TTKBE0401_EN, TTKBL0101_EN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Application of Instrumental Analysis (lect.)</td>
<td>TTKBE0512_EN – 1 cr</td>
<td>István Lázár</td>
<td>1e+0+0</td>
<td>TTKBE0501_EN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Application of Instrumental Analysis (lab.)</td>
<td>TTKBL0512_EN – 3 cr</td>
<td>Attila Gáspar</td>
<td>0+0+3p</td>
<td>TTKBE0501_EN, TTKBL0511_EN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physical Chemistry and Material Science Field</td>
<td>Physical Chemistry I. (lect. and sem.)</td>
<td>TTKBE0401_EN – 3 cr</td>
<td>Attila Bényei</td>
<td>2e+2p+0</td>
<td>TTKBE0101_EN, TTKBE0201_EN, TTKBE0301_EN, TTKBE0401_EN, TTKBL0101_EN</td>
<td></td>
</tr>
<tr>
<td>Physical Chemistry II. (lect. and sem.)</td>
<td>TTKBG0402_EN – 2 cr</td>
<td>Attila Bényei</td>
<td>2e+2p+0</td>
<td>TTKBE0201_EN, TTKBE0301_EN, TTKBE0401_EN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physical Chemistry II. (lab.)</td>
<td>TTKBL0411_EN – 2 cr</td>
<td>Ferenc Krisztian Kálmán</td>
<td>0+0+2p</td>
<td>TTKBL0101_EN, TTKBE0402_EN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physical Chemistry III.</td>
<td>TTKBE0403_EN – 3 cr</td>
<td>Noémi Nagy</td>
<td>2e+0+0</td>
<td>TTKBE0402_EN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Macromolecular Chemistry</td>
<td>TTKBE0611_EN – 3 cr</td>
<td>Sándor Kéki</td>
<td>2e+0+0</td>
<td>TTKBE0302_EN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Materials of Construction</td>
<td>TTKBE1211_EN – 3 cr</td>
<td>David Rácz</td>
<td>2+0+0e</td>
<td>TTKBE0611_EN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plastics and Processing I.</td>
<td>TTKBE1212_EN – 2 cr</td>
<td>Sándor Kéki</td>
<td>2e+0+2p</td>
<td>TTKBE0611_EN, TTKBE0302_EN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Measurement and Processing modul</td>
<td>Informatics Field</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modul</td>
<td>Blocks of courses</td>
<td>Courses</td>
<td>Codes – credits (cr)</td>
<td>Lecturer</td>
<td>Semester (teaching hours: lectures + seminars + (laboratory) practice; type of examination: e:exam, p:practice, t: term grade, s: signature, f: parts of the final exam)</td>
<td>Prerequisites</td>
</tr>
<tr>
<td>--------------------------</td>
<td>-------------------</td>
<td>-------------</td>
<td>----------------------</td>
<td>-----------</td>
<td>---</td>
<td>---------------</td>
</tr>
<tr>
<td>Informatics for Engineers</td>
<td></td>
<td>TTKBG0911_EN - 2 cr</td>
<td>Akos Kuki</td>
<td>0+2+0p</td>
<td></td>
<td>Nincs</td>
</tr>
<tr>
<td>Processing Field</td>
<td></td>
<td>TTKBG0612_EN - 4 cr</td>
<td>István Árpád</td>
<td>(2+1)t+0</td>
<td></td>
<td>TTKBL0911_EN</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TTKBG0613_EN - 3 cr</td>
<td>István Árpád</td>
<td>0+3t+0</td>
<td></td>
<td>TTKBG0612_EN</td>
</tr>
<tr>
<td>Mechanics and Unit Operation modul</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mechanics Field</td>
<td></td>
<td>TTKBG0614_EN - 6 cr</td>
<td>Mikhály Nagy</td>
<td>(2+3)t+0</td>
<td></td>
<td>TTKBE0201_EN</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TTKBG0615_EN - 6 cr</td>
<td>Mikhály Nagy</td>
<td>(2+3)t+0</td>
<td></td>
<td>TTKBE0301_EN</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TTKBG0616_EN - 6 cr</td>
<td>Mikhály Nagy</td>
<td>(2+3)e+0</td>
<td></td>
<td>TTKBE0401_EN</td>
</tr>
<tr>
<td>Unit Operation Field</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TTKBE0611_EN - 3 cr</td>
<td>Márton Nagy</td>
<td>0+2p+0</td>
<td></td>
<td>TTKBG0911_EN</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TTKBE0612_EN - 3 cr</td>
<td>Márton Nagy</td>
<td>0+2p+0</td>
<td></td>
<td>TTKBG0912_EN</td>
</tr>
<tr>
<td>Technology modul</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Planning Field</td>
<td></td>
<td>TTKBE1111_EN - 3 cr</td>
<td>Lajos Nagy</td>
<td>2e+</td>
<td></td>
<td>TTKBE0201_EN</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TTKBL1111_EN - 4 cr</td>
<td>Lajos Nagy</td>
<td></td>
<td></td>
<td>TTKBE0301_EN</td>
</tr>
<tr>
<td>Chemical Technology Field</td>
<td></td>
<td>TTKBE1112_EN - 3 cr</td>
<td>Lajos Nagy</td>
<td>2e+</td>
<td></td>
<td>TTKBE0401_EN</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TTKBL1112_EN - 4 cr</td>
<td>Lajos Nagy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TTKBE1113_EN - 3 cr</td>
<td>Dávid Récz</td>
<td>2e+</td>
<td></td>
<td>TTKBE1111_EN</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TTKBL1113_EN - 4 cr</td>
<td>Dávid Récz</td>
<td></td>
<td></td>
<td>TTKBL1111_EN</td>
</tr>
<tr>
<td>Environmental Technology</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TTKBE1114_EN - 3 cr</td>
<td>Miklós Nagy</td>
<td>2e+0+2p</td>
<td></td>
<td>TTKBE1111_EN</td>
</tr>
<tr>
<td>Pilot Plant Work</td>
<td></td>
<td>TTKBE1115_EN - 5 cr</td>
<td>Miklós Nagy</td>
<td>0+(1+4)p</td>
<td></td>
<td>TTKBE1111_EN</td>
</tr>
<tr>
<td>Modul</td>
<td>Blocks of courses</td>
<td>Courses</td>
<td>Codes – credits (cr)</td>
<td>Lecturer</td>
<td>Semester (teaching hours: lectures + seminars + (laboratory) practice; type of examination: e: exam, p: practice, t: term grade, s: signature, f: parts of the final exam)</td>
<td>Prerequisites</td>
</tr>
<tr>
<td>-------</td>
<td>------------------</td>
<td>---------</td>
<td>---------------------</td>
<td>----------</td>
<td>---</td>
<td>---------------</td>
</tr>
<tr>
<td>Safety Field</td>
<td></td>
<td>Safety</td>
<td>TTKBE0711_EN – 3 cr</td>
<td>György Deák</td>
<td>2e+0+0</td>
<td>TTKBE1112_EN</td>
</tr>
<tr>
<td>Special Courses</td>
<td></td>
<td>Basics of Petrochemistry</td>
<td>TTKBE1113_EN – 3 cr</td>
<td>Lajos Nagy</td>
<td>2e+0+0</td>
<td>TTKBE1111_EN</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Waste Management</td>
<td>TTKBE1116_EN – 3 cr</td>
<td>Dávid Rácz</td>
<td>2e+0+0</td>
<td>TTKBE1111_EN</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Spectroscopic Methods I.</td>
<td>TTKBE0503_EN – 3 cr</td>
<td>Gyula Báta</td>
<td>2e+0+0</td>
<td>TTFBE2113_EN</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Quality Management</td>
<td>TTBEBVM-KT6_EN – 3 cr</td>
<td>Ágnes Kotsis</td>
<td>2e+0+0</td>
<td>TTBEBVM-KT4_EN</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Design of Experiments</td>
<td>TTKBE0617_EN – 3 cr</td>
<td>Ákos Kuki</td>
<td>2t+0+0</td>
<td>TTKBE0403_EN</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BSc Thesis I.</td>
<td>TTKBG2011_EN – 2 cr</td>
<td>Sándor Kéki</td>
<td>0+0+2p</td>
<td>minimum of 140 credits</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BSc Thesis II.</td>
<td>TTKBG2012_EN – 13 cr</td>
<td>Sándor Kéki</td>
<td>0+0+13p</td>
<td>TTKBG2011_EN</td>
</tr>
<tr>
<td>Optional Chemistry Courses (10 cr)</td>
<td></td>
<td>Crystallography</td>
<td>TTGBE5104_EN – 3 cr</td>
<td>Gábor Dobosi</td>
<td>2e+0+0(fall semester)</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Basics of Environmental Science</td>
<td>TTTBE0040_EN – 1 cr</td>
<td>István Gyulai</td>
<td>1e+0+0(fall semester)</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td>History of Chemistry</td>
<td>TTKBE0007_EN – 3 cr</td>
<td>Ágnes Dávid</td>
<td>2e+0+0(spring semester)</td>
<td>TTKBE0101_EN</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Macroeconomics</td>
<td>TTBEBVM-KT3_EN – 3 cr</td>
<td>Pál Czegledi</td>
<td>2e+0+0(fall semester)</td>
<td>TTBEBVM-KT1_EN</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Special and Dangerous Materials</td>
<td>TTKBE0204_EN – 3 cr</td>
<td>István Lázár</td>
<td>2e+0+0(fall semester)</td>
<td>TTKBE0201_EN, TTKBE0301_EN, TTKBE0401_EN</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Computational Quantum Chemistry</td>
<td>TTKBG0903_EN – 3 cr</td>
<td>Mihály Purgel</td>
<td>0+2p+0(spring semester)</td>
<td>TTMBE0809_EN, TTMBG0809_EN, TTKBG0911_EN</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Applied Radiochemistry</td>
<td>TTKBE0504_EN – 3 cr</td>
<td>Noémi Nagy</td>
<td>2e+0+0(fall semester)</td>
<td>TTKBE0403_EN</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Plastics and Processing II.</td>
<td>TTKBE1213_EN – 2 cr</td>
<td>György Deák</td>
<td>0+2p+0</td>
<td>TTKBE0611_EN</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Colloid Chemistry</td>
<td>TTKBE0415_EN – 3 cr</td>
<td>Levente Novák</td>
<td>2e+0+0</td>
<td>TTKBE0403_EN</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Biochemistry III.</td>
<td>TTBBE0304_EN – 3 cr</td>
<td>Teréz Barna</td>
<td>2e+0+0</td>
<td>TTBBE2035_EN</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Biocolloids</td>
<td>TTKBE0405_EN – 3 cr</td>
<td>Levente Novák</td>
<td>2e+0+0(spring semester)</td>
<td>TTKBE0402_EN</td>
</tr>
<tr>
<td>Modul</td>
<td>Blocks of courses</td>
<td>Courses</td>
<td>Codes– credits (cr)</td>
<td>Lecturer</td>
<td>Semester (teaching hours: lectures + seminars + (laboratory) practice; type of examination: e: exam, p: practice, t: term grade, s: signature, f: parts of the final exam)</td>
<td>Prerequisites</td>
</tr>
<tr>
<td>-------</td>
<td>-------------------</td>
<td>---------</td>
<td>--------------------</td>
<td>----------</td>
<td>---</td>
<td>---------------</td>
</tr>
<tr>
<td>NMR operator training I.</td>
<td>TTKBL0004_EN – 2 cr</td>
<td>Gyula Batta</td>
<td>0+2p</td>
<td>TTKBE0503_EN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plastics and Processing III.</td>
<td>TTKBE1214_EN – 3 cr</td>
<td>Dávid Rácz</td>
<td>0+3p+0</td>
<td>TTKBE0611_EN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemical Technology III.</td>
<td>TTKBE1117_EN – 3 cr</td>
<td>Lajos Nagy</td>
<td>2p+0+0</td>
<td>TTKBL1112_EN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Organic Chemistry Seminar I.</td>
<td>TTKGB0311_EN -1 cr</td>
<td>László Juhász</td>
<td>0+1p+0</td>
<td>TTKBE0101_EN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Organic Chemistry Seminar II.</td>
<td>TTKGB0312_EN -1 cr</td>
<td>László Juhász</td>
<td>0+1p+0</td>
<td>TTKBE0201_EN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Advanced Organic Chemistry Seminar</td>
<td>TTKGB0313_EN -2 cr</td>
<td>László Juhász</td>
<td>0+2p+0</td>
<td>TTKBE0302_EN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (credits, hours/week, exams):</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>27cr, 23h, 6e, 2p, 1t</td>
<td></td>
</tr>
<tr>
<td>Theoretical/practical</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>22/5</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Other requirements</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Visits at Chemical Companies (5 days)</td>
<td>TTKBG1118_EN</td>
<td>Ákos Kuki</td>
<td>0+0+2</td>
<td>s</td>
<td>Parallel registration to TTKBE1111_EN</td>
<td></td>
</tr>
<tr>
<td>Industrial Placement</td>
<td>TTKBG1119_EN</td>
<td>Ákos Kuki</td>
<td>6 week</td>
<td>s</td>
<td>TTKBE1111_EN</td>
<td></td>
</tr>
<tr>
<td>Physical Education</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
DESCRIPTION OF SUBJECTS
(in order of their appearance in the tables above)

<table>
<thead>
<tr>
<th>Title of course: Mathematics I.</th>
<th>Code: TTMBE0808</th>
<th>ECTS Credit points: 5</th>
</tr>
</thead>
</table>

Type of teaching, contact hours
- lecture: 4 hours/week
- practice: -
- laboratory: -

Evaluation: exam

Workload (estimated), divided into contact hours:
- lecture: 56 hours
- practice: -
- laboratory: -
- home assignment: 44 hours
- preparation for the exam: 50 hours
Total: 150 hours

Year, semester: 1st year, 1st semester

Its prerequisite(s): -

Further courses built on it: TTMBE0809_EN, TTMBG0809_EN

Topics of course

Literature

Compulsory: -

Recommended:
- *Thomas, Weir & Hass: Thomas' Calculus,*
- *K. A. Stroud: Calculus and Mathematical Analysis,*
- *K. A. Stroud: Engineering Mathematics,*
- *E. Mendelson: Schaum's 3000 Solved Problems in Calculus,*

Course objective/intended learning outcomes

a) Knowledge
- He/She has knowledge to solve problems on the field of natural processes, using natural sources, and understanding the chemical background of living and non-living systems.
- He/She has the knowledge to test or measure chemical reactions, systems with scientific
methods (including computational) under supervision.

b) Abilities
- He/She is able to use the previously obtained knowledge on the field of natural and anthropogenic studies to solve practical problems.

c) Attitude
- He/She is ready to discuss problems on the field of chemistry and other science with professionals.

d) Autonomy and responsibility
- He/She stands for his/her opinion or ideology in professional discussions.

Schedule:

<table>
<thead>
<tr>
<th>Week</th>
<th>Topics</th>
</tr>
</thead>
<tbody>
<tr>
<td>2nd week</td>
<td>Complex numbers. The algebraic structure of the set of complex numbers. The complex plane. Trigonometric form of complex numbers, multiplication, division, n-th power, n-th root.</td>
</tr>
<tr>
<td>8th week</td>
<td>Primitive functions, the indefinite integral. Integration methods. Definite integral. Basic properties of the definite integrals. Integration of a continuous functions. The Newton-Leibniz formula.</td>
</tr>
<tr>
<td>9th week</td>
<td>Improper integrals. Applications.</td>
</tr>
<tr>
<td>10th week</td>
<td>Ordinary differential equations. The solution of separable, homogeneous and linear differential equations.</td>
</tr>
<tr>
<td>11th week</td>
<td></td>
</tr>
</tbody>
</table>

12th week

13th week

14th week

Requirements:
Only students who have the grade from the practical part can take part of the exam. The exam is written. The grade is given according to the following table:

<table>
<thead>
<tr>
<th>Score</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-49</td>
<td>fail (1)</td>
</tr>
<tr>
<td>50-62</td>
<td>pass (2)</td>
</tr>
<tr>
<td>63-74</td>
<td>satisfactory (3)</td>
</tr>
<tr>
<td>75-86</td>
<td>good (4)</td>
</tr>
<tr>
<td>87-100</td>
<td>excellent (5)</td>
</tr>
</tbody>
</table>

Person responsible for course: Dr. Zoltán Muzsnay, associate professor, PhD

Lecturer: Dr. Zoltán Muzsnay, associate professor, PhD

<table>
<thead>
<tr>
<th>Title of course: Mathematics I.</th>
<th>Code: TTMBG0808_EN</th>
<th>ECTS Credit points: 3</th>
</tr>
</thead>
</table>

Type of teaching, contact hours
- lecture: -
- practice: 3 hours/week
- laboratory: -

Evaluation: exam

Workload (estimated), divided into contact hours:
- lecture: -
- practice: 42 hours
- laboratory: -
- home assignment: 48 hours
- preparation for the exam:
Total: 90 hours

Year, semester: 1st year, 1st semester

Its prerequisite(s): -

Further courses built on it: TTMBE0809_EN, TTMBG0809_EN
Topics of course

Literature

Compulsory: -
Recommended:

- Thomas, Weir & Hass: Thomas' Calculus,
- K. A. Stroud: Calculus and Mathematical Analysis,
- K. A. Stroud: Engineering Mathematics,
- E. Mendelson: Schaum's 3000 Solved Problems in Calculus,

Course objective/intended learning outcomes

a) Knowledge
- He/She has knowledge to solve problems on the field of natural processes, using natural sources, and understanding the chemical background of living and non-living systems.
- He/She has the knowledge to test or measure chemical reactions, systems with scientific methods (including computational) under supervision.

b) Abilities
- He/She is able to use the previously obtained knowledge on the field of natural and anthropogenic studies to solve practical problems.

c) Attitude
- He/She is ready to discuss problems on the field of chemistry and other science with professionals.

d) Autonomy and responsibility
- He/She stands for his/her opinion or ideology in professional discussions.

Schedule:

1st week

2nd week
Complex numbers. The algebraic structure of the set of complex numbers. The complex plane. Trigonometric form of complex numbers, multiplication, division, n-th power, n-th root.

3rd week

4th week
5th week

6th week

7th week

8th week
Test.

9th week
Improper integrals. Applications.

10th week
Ordinary differential equations. The solution of separable, homogeneous and linear differential equations.

11th week

12th week

13th week

14th week
Test.

Requirements:
- for a signature
Participation at practice classes is compulsory. A student must attend the practice classes and may not miss more than three times during the semester. In case a student does so, the subject will not be signed and the student must repeat the course. Attendance at practice classes will be recorded by the practice leader. Being late is equivalent with an absence.

- for a grade
During the semester one test is written. The grade is given according to the following table:

<table>
<thead>
<tr>
<th>Score</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-49</td>
<td>fail (1)</td>
</tr>
<tr>
<td>50-59</td>
<td>pass (2)</td>
</tr>
<tr>
<td>60-74</td>
<td>satisfactory (3)</td>
</tr>
<tr>
<td>75-84</td>
<td>good (4)</td>
</tr>
<tr>
<td>85-100</td>
<td>excellent (5)</td>
</tr>
</tbody>
</table>
Students can take a retake test in conformity with the EDUCATION AND EXAMINATION RULES AND REGULATIONS.

Person responsible for course: Dr. Zoltán Muzsnay, associate professor, PhD

Lecturer: Dr. Zoltán Muzsnay, associate professor, PhD

<table>
<thead>
<tr>
<th>Title of course</th>
<th>Mathematics II.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>TTMBE0809_EN</td>
</tr>
</tbody>
</table>

| **ECTS Credit points:** | 3 |

Type of teaching, contact hours

- lecture: 2 hours/week
- practice: -
- laboratory: -

Evaluation: exam

Workload (estimated), divided into contact hours:

- lecture: 28 hours
- practice: -
- laboratory: -
- home assignment: 22 hours
- preparation for the exam: 40 hours

Total: 90 hours

Year, semester: 1st year, 2nd semester

Its prerequisite(s): TTMBE0808_EN, TTMBG0808_EN

Further courses built on it:

Topics of course

Literature

- Compulsory: -
- Recommended:
 - *Thomas, Weir & Hass: Thomas’ Calculus*,
 - *P. Sahoo: Probability and Mathematical Statistics*,
 - *E. Mendelson: Schaum's 3000 Solved Problems in Calculus*,

Course objective/intended learning outcomes

a) Knowledge
- He/She has knowledge to solve problems on the field of natural processes, using natural sources, and understanding the chemical background of living and non-living systems.
- He/She has the knowledge to test or measure chemical reactions, systems with scientific methods (including computational) under supervision.

b) Abilities
- He/She is able to use the previously obtained knowledge on the field of natural and anthropogenic studies to solve practical problems.

c) Attitude
- He/She is ready to discuss problems on the field of chemistry and other science with professionals.

d) Autonomy and responsibility
- He/She stands for his/her opinion or ideology in professional discussions.

Schedule:

<table>
<thead>
<tr>
<th>Week</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>Rn: the n-dimensional Euclidean space. Sequences in Rn. Function of several variables with real and vector values.</td>
</tr>
<tr>
<td>2nd</td>
<td>Limit and continuity of multivariable functions.</td>
</tr>
<tr>
<td>3rd</td>
<td>Total derivative and partial derivatives of a multivariable functions. Chain rule. Inverse function theorem. The implicit function theorem.</td>
</tr>
<tr>
<td>4th</td>
<td>Directional derivative. Gradient and its application. Extreme values of real functions of several variables.</td>
</tr>
<tr>
<td>5th</td>
<td>Multiple integral. Calculation of multiple integral, successive integration. Integration in normal domains.</td>
</tr>
<tr>
<td>8th</td>
<td>Line integral. Basic properties. Applications.</td>
</tr>
<tr>
<td>10th</td>
<td>Element of the probability theory. Conditional probability. Total probability theorem, Bayes’ theorem. Independence of events.</td>
</tr>
<tr>
<td>12th</td>
<td></td>
</tr>
</tbody>
</table>
Expected value of random variables, Variance of random variables. Examples. Markov and Chebychev inequality, the law of large numbers.

13th week

14th week

Element of statistics.

Requirements:

Only students who have the grade from the practical part can take part of the exam. The exam is written. The grade is given according to the following table:

<table>
<thead>
<tr>
<th>Score</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-49</td>
<td>fail (1)</td>
</tr>
<tr>
<td>50-62</td>
<td>pass (2)</td>
</tr>
<tr>
<td>63-74</td>
<td>satisfactory (3)</td>
</tr>
<tr>
<td>75-86</td>
<td>good (4)</td>
</tr>
<tr>
<td>87-100</td>
<td>excellent (5)</td>
</tr>
</tbody>
</table>

Person responsible for course: Dr. Zoltán Muzsnay, associate professor, PhD

Lecturer: Dr. Zoltán Muzsnay, associate professor, PhD

<table>
<thead>
<tr>
<th>Title of course</th>
<th>Mathematics II.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>TTMBG0809_EN</td>
</tr>
<tr>
<td>ECTS Credit points</td>
<td>3</td>
</tr>
</tbody>
</table>

Type of teaching, contact hours

- lecture: -
- practice: 3 hours/week
- laboratory: -

Evaluation: exam

Workload (estimated), divided into contact hours:

- lecture: -
- practice: 42 hours
- laboratory: -
- home assignment: 48 hours
- preparation for the exam:

Total: 90 hours

Year, semester: 1st year, 2nd semester

Its prerequisite(s): TTMBE0808_EN, TTMBG0808_EN

Further courses built on it:

Topics of course

Literature

Compulsory: -

Recommended:

- Thomas, Weir & Hass: *Thomas’ Calculus*,
- P. Sahoo: *Probability and Mathematical Statistics*
- E. Mendelson: *Schaum's 3000 Solved Problems in Calculus*,

Course objective/intended learning outcomes

a) **Knowledge**

- He/She has knowledge to solve problems on the field of natural processes, using natural sources, and understanding the chemical background of living and non-living systems.
- He/She has the knowledge to test or measure chemical reactions, systems with scientific methods (including computational) under supervision.

b) **Abilities**

- He/She is able to use the previously obtained knowledge on the field of natural and anthropogenic studies to solve practical problems.

c) **Attitude**

- He/She is ready to discuss problems on the field of chemistry and other science with professionals.

d) **Autonomy and responsibility**

- He/She stands for his/her opinion or ideology in professional discussions.

Schedule:

1st week

Rn: the n-dimensional Euclidean space. Sequences in Rn. Function of several variables with real and vector values.

2nd week

Limit and continuity of multivariable functions.

3rd week

Total derivative and partial derivatives of a multivariable functions. Chain rule. Inverse function theorem. The implicit function theorem.

4th week

Directional derivative. Gradient and its application. Extreme values of real functions of several variables.

5th week

Multiple integral. Calculation of multiple integral, successive integration. Integration in normal domains.

6th week
Partial differential equations and systems of differential equations. Basic definitions and examples. Some elementary examples and problems.

7th week
Test.

8th week

9th week

10th week

11th week
Element of the probability theory. Conditional probability. Total probability theorem, Bayes’ theorem. Independence of events.

12th week

13th week
Expected value of random variables, Variance of random variables. Examples. Markov and Chebychev inequality, the law of large numbers.

14th week

Requirements:
- for a signature
 Participation at practice classes is compulsory. A student must attend the practice classes and may not miss more than three times during the semester. In case a student does so, the subject will not be signed and the student must repeat the course. Attendance at practice classes will be recorded by the practice leader. Being late is equivalent with an absence.
- for a grade
 During the semester one test is written. The grade is given according to the following table:

<table>
<thead>
<tr>
<th>Score</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-49</td>
<td>fail (1)</td>
</tr>
<tr>
<td>50-59</td>
<td>pass (2)</td>
</tr>
<tr>
<td>60-74</td>
<td>satisfactory (3)</td>
</tr>
<tr>
<td>75-84</td>
<td>good (4)</td>
</tr>
<tr>
<td>85-100</td>
<td>excellent (5)</td>
</tr>
</tbody>
</table>

Students can take a retake test in conformity with the EDUCATION AND EXAMINATION RULES AND REGULATIONS.

Person responsible for course: Dr. Zoltán Muzsnay, associate professor, PhD

Lecturer: Dr. Zoltán Muzsnay, associate professor, PhD
Title of course: Physics for Engineers I
Code: TTFBE2111_EN
ECTS Credit points: 3

Type of teaching, contact hours
- lecture: 2 hours/week
- practice: 1 hours/week
- laboratory: -

Evaluation: exam

Workload (estimated), divided into contact hours:
- lecture: 28 hours
- practice: 14 hours
- laboratory: -
- home assignment: 24 hours
- preparation for the exam: 24 hours
Total: 90 hours

Year, semester: 1st year, 1st semester

Its prerequisite(s): –

Further courses built on it: TTFBE2113_EN, TTKBE0401_EN, TTKBG0401_EN, MFVGE31V03_EN

Topics of course

Literature

J.W. Jewett Jr, R.A. Serway: Physics for Scientists and Engineers

Course objective/intended learning outcomes

a) Knowledge
- He/she knows the fundamental principles of classical mechanics and thermodynamics.
- He/she knows the most important experiments of classical physics.

b) Abilities
- He/she is able to apply the most important laws of kinematics and dynamics in solving simple computational tasks.

c) Attitude
- He/she can accept the laws of classical physics.
- He/she is open to improve his/her abilities in natural sciences as well as in other areas.

d) Autonomy and responsibility
- He/she continuously improves himself/herself.
- He/she is realistic about his/her work and places it in the context of other colleagues' work.
<table>
<thead>
<tr>
<th>Week</th>
<th>Schedule</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>Physical quantities, standards, units: definition of length, equivalence relations and classes, scales, standards of length, time and mass, basic and derived physical quantities, units and prefixes in SI, physical dimensions, dimensional analysis</td>
</tr>
<tr>
<td>2nd</td>
<td>Kinematics in one dimension: Cartesian, spherical and cylindrical coordinate systems, vectors, operations with vectors, position vector, position function, average and instantaneous speed, average and instantaneous acceleration in one dimension</td>
</tr>
<tr>
<td>3rd</td>
<td>Kinematics in three dimensions: displacement vector and path, average and instantaneous velocity, average and instantaneous acceleration in three dimensions, circular motion, tangential and normal acceleration, angular velocity, angular acceleration, relative motions, Galilean transformation, Coriolis acceleration</td>
</tr>
<tr>
<td>4th</td>
<td>Dynamics: Newton's first law, inertial frames, experimental laws of two-body interactions, inertial mass, momentum, conservation of momentum, Newton's second law, Newton's third law</td>
</tr>
<tr>
<td>5th</td>
<td>Force laws: basic interactions in nature, the role of force laws in equations of motion, force law of gravitation, force law of electrostatic interaction between two point charges, force law of a charged particle moving in magnetic field, force law of an idealized spring, force law of friction, force law of drag forces</td>
</tr>
<tr>
<td>6th</td>
<td>Ballistic motions: analytic solution of the equation of motion near the surface of the Earth, describing the path, calculating the parameters of the special points of the path, numerical solution of the equation of motion near the surface of the Earth</td>
</tr>
<tr>
<td>7th</td>
<td>Center of mass, constrained motion: center of mass defined in the discreet and in the continuum limit, density, internal and external forces, constrained motion on a slope, constrained motion of a pendulum</td>
</tr>
<tr>
<td>8th</td>
<td>Collisions: describing collisions in the center-of-mass and in the laboratory frame, elastic and inelastic collisions, kinetic energy, collisions in one dimension, special cases of one-dimensional collisions</td>
</tr>
<tr>
<td>9th</td>
<td>Work and energy: work, work-energy theorem, work of the gravitational pull of the Earth, work of an idealized spring, power, potential energy, conservation of total mechanical energy, conservative and dissipative forces, potential energy of a body under the influence of an idealized spring, potential energy of a body under the influence of gravitation</td>
</tr>
<tr>
<td>10th</td>
<td>Oscillations: analyzing the motion of a pendulum, simple harmonic oscillations, addition of two simple harmonic oscillations, Lissajous figures, damped oscillations, forced oscillations, coupled oscillations</td>
</tr>
<tr>
<td>11th</td>
<td>Elasticity: tensile stress, shearing stress, uniform compression, relative deformation, Young's modulus, shear modulus, compression modulus, Hooke’s law, elastic energy, elastic energy density</td>
</tr>
</tbody>
</table>
Wave motion: mechanical waves, transverse and longitudinal waves, one-dimensional wave motion in a stretched string, wave speed, wave function, wave equation, harmonic waves, wavelength, wave number, time period, energy transports in wave motion, kinetic and potential energy density of an elastic medium, energy density current, intensity

13th week
Wave motion: multi-dimensional wave motion, wavefronts, spherical waves, plane waves, principle of linear superposition, interference, coherent waves, standing waves, sound waves, intensity, pitch and tone, fundamental frequency and overtones, diffraction, Huygens’ principle, Huygens–Fresnel principle

14th week
Temperature: extensive and intensive quantities, thermal equilibrium, zeroth law of thermodynamics, empirical measuring scales, Celsius scale, Kelvin scale, triple-point temperature, Gay-Lussac’s law, constant-volume gas scales, ideal gas

Requirements:
The course exam is a written examination. In the exam theoretical questions and practical problems must be answered and solved in 100 minutes. The evaluation of the exam occurs based on the following grading:

<table>
<thead>
<tr>
<th>Score Range</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>0–49 %</td>
<td>1</td>
</tr>
<tr>
<td>50–62 %</td>
<td>2</td>
</tr>
<tr>
<td>63–75 %</td>
<td>3</td>
</tr>
<tr>
<td>76–88 %</td>
<td>4</td>
</tr>
<tr>
<td>89–100 %</td>
<td>5</td>
</tr>
</tbody>
</table>

Person responsible for course: Dr. Balázs Ujvári, assistant professor, PhD
Lecturer: Dr. Balázs Ujvári, assistant professor, PhD

Title of course: Physics for Engineers II
Code: TTFBE2113_EN
ECTS Credit points: 3

Type of teaching, contact hours
- lecture: 2 hours/week
- practice: 1 hours/week
- laboratory: -

Evaluation: exam

Workload (estimated), divided into contact hours:
- lecture: 28 hours
- practice: 14 hours
- laboratory: -
- home assignment: 24 hours
- preparation for the exam: 24 hours
Total: 90 hours

Year, semester: 1st year, 2nd semester
Its prerequisite(s): TTFBE2111_EN
Further courses built on it: TTKBE0503_EN

Topics of course

Literature

J.W. Jewett Jr, R.A. Serway: Physics for Scientists and Engineers

Course objective/intended learning outcomes

a) Knowledge
- He/she knows the fundamental principles of electrodynamics and modern physics.
- He/she knows the most important experiments leading to the birth of modern physics.

b) Abilities
- He/she is able to apply the most important laws of electrodynamics and modern physics in solving simple computational tasks.

c) Attitude
- He/she can accept the laws of modern physics.
- He/she is open to improve his/her abilities in natural sciences as well as in other areas.

d) Autonomy and responsibility
- He/she continuously improves himself/herself.
- He/she is realistic about his/her work and places it in the context of other colleagues' work.

Schedule:

1st week
Geometrical optics: law of reflection, law of refraction, total reflection, imaging by concave and convex mirrors, imaging by a single spherical refractive surface, imaging by converging and diverging thin lenses, lense distortions

2nd week
Wave properties of light: coherent light waves, interference, diffraction, Young’s double-slit experiment, thin-film interference, single-slit diffraction, diffraction gratings

3rd week
Electrostatics: electric charge, insulators, conductors and semi-conductors, Coulomb's law, electric field, field vector, field lines, electric field of a point charge, electric dipoles, linear, surface and volume charge distributions

4th week
Gauss' law: electric flux through open and closed surfaces, Gauss' law and its applications, electric field of a uniformly charged infinite line, electric field of a uniformly charged infinite plane, electric charge of a uniformly charged spherical volume

5th week
Electric potential: comparison of the force laws of gravitational and electrostatical interactions, work done by electric field, potential energy, potential energy of two-body and many-body systems, potential, potential due to a single point charge and charge distributions
6th week
Capacitors: parallel-plate, cylindrical and spherical capacitors, capacitance, energy and energy density stored by the electrostatic field, capacitors with dielectrics, equivalent capacitance of capacitors connected in parallel and series

7th week
Electric current: electric current, electric current density, resistance, resistivity, conductivity, differential and integral form of Ohm's law, temperature dependence of resistivity, electric power

8th week
Direct current circuits: equivalent resistance of resistors connected in parallel and series, ideal and non-ideal batteries, electromotive force, Kirchhoff's junction law, Kirchhoff's loop law, transient phenomena in RC circuits

9th week
Magnetic field: magnetic field, field vector, field lines, electric charge moving in magnetic field, Lorentz's force, cyclotron, magnetic force acting on a current-carrying conductor

10th week
Sources of magnetic field: Biot–Savart law, magnetic field of a current-carrying straight wire, magnetic force between two parallel conductors, definition of the unit of electric current, Ampere's law

11th week
Solenoids, displacement current: magnetic field of a solenoid, magnetic flux through open and closed surfaces, Gauss' law of magnetism, displacement current, Ampere–Maxwell law

12th week
Induction: induced electromotive force, Faraday's law of induction, Lenz's law, eddy currents, self-induction, inductance, transient phenomena in RL circuits

13th week
LC and RLC circuits: energy conditions in LC circuits, analogy to free harmonic oscillations of a mechanical system, energy conditions in RLC circuits, analogy to damped oscillations of a mechanical system

14th week
Electromagnetic waves: differential and integral form of Maxwell's equations, linearly polarized plane electromagnetic waves

<table>
<thead>
<tr>
<th>Requirements:</th>
</tr>
</thead>
<tbody>
<tr>
<td>The course exam is a written examination. In the exam theoretical questions and practical problems must be answered and solved in 100 minutes. The evaluation of the exam occurs based on the following grading:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Percentage Range</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>0–49 %</td>
<td>1</td>
</tr>
<tr>
<td>50–62 %</td>
<td>2</td>
</tr>
<tr>
<td>63–75 %</td>
<td>3</td>
</tr>
<tr>
<td>76–88 %</td>
<td>4</td>
</tr>
<tr>
<td>89–100 %</td>
<td>5</td>
</tr>
</tbody>
</table>

Person responsible for course: Dr. Balázs Ujvári, assistant professor, PhD

Lecturer: Dr. Balázs Ujvári, assistant professor, PhD
Title of course
General Chemistry I.

Code
TTKBE0101_EN

ECTS Credit points
4

Type of teaching, contact hours
- lecture: 3 hours/week
- practice: -
- laboratory: -

Evaluation
exam

Workload (estimated), divided into contact hours:
- lecture: 42 hours
- practice: -
- laboratory: -
- home assignment: -
- preparation for the exam: 68 hours

Total: 110 hours

Year, semester
1st year, 1st semester

Its prerequisite(s)
-

Further courses built on it
TTKBL0101_EN, TTKBE0201_EN, (TTKBE0007_EN)

Topics of course

Literature

Compulsory:

Course objective/intended learning outcomes

a) Knowledge
- He/She knows the basic qualitative and quantitative chemical principles, and the methods based on it.
- He/She knows the main models and theories of chemical bonds and molecular structure based on scientific findings.
- He/She can understand and communicate professionally on chemical subjects at his/her native language.
- He/She understands the structure of atoms, molecules and ions; and interprets the periodical change in the physical and chemical properties based on structural concepts.
- He/She knows the principles of stoichiometry and the main characteristics of chemical reactions
and phase changes.

b) Abilities
- He/She is able to understand the natural and anthropogenic chemical reactions, and capable for data collection, evaluation on these fields including the data mining from literature.
- He/She is able to use the previously obtained knowledge on the field of natural and anthropogenic studies to solve practical problems.
- He/She is capable of describing physical and chemical processes with regard to quantitative, qualitative and energetic aspects.
- He/She is able to classify chemical reactions.

c) Attitude
- He/She pursues to use his/her knowledge to understand and describe the relationship of chemical processes connected to human life.

d) Autonomy and responsibility
- He/She can make reasonable evaluations about his/her own work comparing to others to the same field.

Schedule:
1st week
Classification of natural sciences, history and development of chemistry. The concept of chemical change. The SI system of units, the most important physical quantities and units. Conservation of mass and energy. The law of definite proportions, the law of multiple proportions, law of combining gas volumes, Avogadro’s law. Dalton’s atomic theory. Relative atomic and molecular weights. Amount of substance and the definition of mole. Notations for elements and compounds, symbol, empirical formula, molecular formula, structure, isomerism.

2nd week
Valency and oxidation number. Oxidation number in inorganic compounds. Types of chemical reactions. Latin names of compounds. Experimental background of the atomic theory, discovery of the nucleus. Discovery and basic properties of subatomic particles (electron, proton, neutron). Isotopes.

3rd week

4th week

5th week
Electronegativity, ionization energy, electronaffinity, atomic and ionic radii and their change across the periodic table. The ionic bond. Calculation of the lattice energy. Metallic bonding.

6th week
The covalent bond. Basic characteristics of the molecular orbital (MO) theory and its application for diatomic molecules. The valence shell electron pair repulsion (VSEPR) model. The shape of molecules, bond angles, bond orders, hybridization. Polarity of covalent bonds, polar and nonpolar molecules.
7th week

8th week

9th week

10th week

11th week

12th week

13th week

14th week

Requirements:
- for a signature
 Attendance at lectures is recommended, but not compulsory.
- for a grade
 The course ends in an examination. The result of the examination determines the final grade. The minimum requirement for the examination is 50%. Based on the score of the exam, the grade is given according to the following table:

<table>
<thead>
<tr>
<th>Score</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-49</td>
<td>fail (1)</td>
</tr>
<tr>
<td>Grade Range</td>
<td>Description</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td>50-62</td>
<td>pass (2)</td>
</tr>
<tr>
<td>63-75</td>
<td>satisfactory (3)</td>
</tr>
<tr>
<td>76-87</td>
<td>good (4)</td>
</tr>
<tr>
<td>88-100</td>
<td>excellent (5)</td>
</tr>
</tbody>
</table>

If the case of failure, students can take retake exam(s) in conformity with the EDUCATION AND EXAMINATION RULES AND REGULATIONS.

Person responsible for course: Dr. Gábor Bellér, assistant professor, PhD

Lecturer: Dr. Gábor Bellér, assistant professor, PhD

Title of course: General Chemistry I. (seminar)

Code: TTKBG0101_EN
ECTS Credit points: 3

Type of teaching, contact hours
- lecture: -
- practice: 4 hours/week
- laboratory: -

Evaluation: middle-term and final exams

Workload (estimated), divided into contact hours:
- lecture: -
- practice: 44 hours
- laboratory: -
- home assignment: 26 hours
- preparation for the exam: 20 hours

Total: 90 hours

Year, semester: 1st year, 1st semester

Its prerequisite(s): -

Further courses built on it: TTKBL0101_EN

Topics of course

The main objective of the seminar is to give the basic knowledge and background for students to solve general calculation problems strictly connected to the general chemistry laboratory practice: calculations connected to mass and volume measurements, concentration and its units, crystallization, acid-base and redox equilibria, balancing chemical equations.

Literature

Compulsory:
- The collection of calculation problems will be available at the Department’s home page (inorg.unideb.hu)

Recommended:
- Darrell Ebbing, Steven D. Gammon: General Chemistry 10th edition
- Darrell Ebbing, Steven D. Gammon: General Chemistry – Standalone book
Course objective/intended learning outcomes

a) Knowledge
 - He/She has a mathematical and scientific background to understand processes in chemical and chemistry related industries.
 - He/She knows the properties of the most important chemicals, their productions and applications.

b) Abilities
 - He/She capable to apply the learned methods, models and plannings of chemical technology and chemical processes through calculations.

c) Attitude
 - During everyday work and installation of new technologies he/she always concerned about sustainable development.

d) Autonomy and responsibility
 - Following directions he/she can work without supervision considering all quality and safety rules.

Schedule: The seminar will be held in 11 weeks.

1st week
Determination of atomic weight, molecular weight, empirical formula, molecular formula, amount of substance. Determination of empirical formula based on weight percent composition and on elemental analysis.

2nd week

3rd week

4th week

5th week

6th week
Review exercises in stoichiometry and concentration calculations.

7th week
Introduction to basic gas laws. Laboratory preparation of gases. Calculation problems connected to evolution of gases based on chemical equations.

8th week

9th week
Definition of pH. Theoretical background of pH calculation. Introduction to water ionisation constants. Relationship between the Kw and H+. Calculation of pH of strong acids and strong bases.

10\(^{th}\) week
Calculation of pH of weak acids and weak bases. Determination of dissociation rate. Theoretical background of buffer systems, buffer capacity. Calculation problems regarding the pH of buffer systems.

11\(^{th}\) week

Requirements:
Students are required to write two general tests (after week 6 and after week 11) which are based on the course material for weeks 1-5 and 7-11, respectively. Each general test is worth 50 points. Grading is based on a five-level scale: 1 (fail), 2 (pass), 3 (average), 4 (good), 5 (excellent). The final course grade is given based on the results of these tests. The score from the general tests must be above 50 % to avoid a ‘fail’ final course grade. In order to pass the seminar, a student should collect minimum 50 points from the general tests. Students with ‘fail’ final course grade due to low test results can re-take once a comprehensive test exam in the examination period.

It is not allowed to miss any seminars. If a student misses two seminars even for any medical reasons, the student’s lecture book won’t be signed and she or he has to retake the course next year.

Person responsible for course: Dr. Norbert Líhi, assistant research fellow, PhD

Lecturer: Dr. Norbert Líhi, assistant research fellow, PhD

<table>
<thead>
<tr>
<th>Title of course: General Chemistry II. (laboratory practice)</th>
<th>ECTS Credit points: 3</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Type of teaching, contact hours</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>- lecture: -</td>
<td>-</td>
</tr>
<tr>
<td>- practice: -</td>
<td>-</td>
</tr>
<tr>
<td>- laboratory: 4 hours/week</td>
<td></td>
</tr>
</tbody>
</table>

Evaluation: short tests, middle-term and final exams

Workload (estimated), divided into contact hours:
- lecture: -
- practice: -
- laboratory: 44 hours
- home assignment: 32 hours
- preparation for the exam: 14 hours

Total: 90 hours

Year, semester: 1\(^{st}\) year, 2\(^{nd}\) semester

Its prerequisite(s): TTKBE0101_EN, TTKBG0101_EN

Further courses built on it: TTKBL0511_EN
Topics of course

The objective of the laboratory practice is to introduce first-year students of different background to laboratory work, the use of basic laboratory equipment, simple laboratory operations and measurements. In addition, students are expected to prepare certain simple chemicals and run various basic experiments to familiarize themselves with chemical laboratory work.

Literature

Compulsory:
- General chemistry laboratory practice (laboratory manual)

Recommended:
- Darrell Ebbing, Steven D. Gammon: General Chemistry 10th edition
- Darrell Ebbing, Steven D. Gammon: General Chemistry – Standalone book

Course objective/intended learning outcomes

a) Knowledge
- He/She has a mathematical and scientific background to understand processes in chemical and chemistry related industries.
- He/She knows the properties of the most important chemicals, their productions and applications.

b) Abilities
- He/She is able to run measurements both on laboratory and scaled up systems and evaluate the obtained data at all steps in the development.

c) Attitude
- During everyday work and installation of new technologies he/she always concerned about sustainable development.
- In each technological or laboratory steps he/she is always concerned to the current rules/laws of health prevention, safety and environmental questions.

d) Autonomy and responsibility
- Following directions, he/she can work without supervision considering all quality and safety rules.

Schedule: The laboratory practice will be held in 11 weeks.

1st week
General introduction to the laboratory rules and laboratory work. Safety training. Introduction to laboratory pieces of equipment. The use of gas burners. Overview of pieces of the received laboratory equipment.

2nd week
Mass and volume measurements: weighing on analytical and standard laboratory balances; introduction to volume measurement devices (pipette, burette, volumetric flask). Calibration of volumetric measuring equipment (pipette or volumetric flask). Calculation the standard error between the measured and nominal values.

3rd week
Introduction to solution preparation: grinding, use of mortal, pestle, volumetric flask. Preparation of a standard solution from a crystalline salt. Introduction to a density measurement. The use of the pycnometer. Determination of the density of the prepared solution by the help of the pycnometer. Calculating the weight percent composition of the prepared solution.

4th week

5th week
Writing the general mid-term test based on the studied material of the laboratory practice and seminar until week 4. Determination of the composition of mixture of potassium chloride and potassium chlorate. Review of different methods used to temperature measurements. Introduction to the measurements of melting point of the solid substances. Determination of the melting point of the purified benzoic acid sample. Determination of the contamination percentage of the purified benzoic acid sample.

6th week
Demonstration of acid-base titration. Preparation of a standard solution of NaOH. Concentration determination of the standard NaOH solution by acid-base titration. Determination of the molar weight of the recrystallized sample of benzoic acid by acid-base titration. Comparing the result with the literature value and calculating the standard error between the given and measured data. Purified benzoic acid due in.

7th week

8th week
Practice the basic laboratory techniques considering the preparation of a salt. Preparation of salts from its metal. Studies of reactions involving gas formation and precipitation.

9th week
Quantitative study of a precipitation reactions to determine the stoichiometric composition of water insoluble precipitates using the method of continuous variation. Dependence of reaction rate of concentration of reactants. Studying the factor affecting the reaction rates. Determination of the reaction rate and the rate law of the studied reaction. Metal salts preparations due in.

10th week
Theoretical background of liquid-liquid extractions and demonstration of the separation techniques. Introduction to buffer systems, buffer capacity by studying a particular buffer system (acetic acid/acetate ion buffer; ammonium ion/ammonia buffer). Hydrolysis of salts to study the acid-base properties of ionic and covalent compounds in aqueous solutions or in reactions with water. Writing of the ionic equations based on the observed chemical reactions.

11th week
General test from week 5 to week 10. General introduction to electrochemistry. Study of redox reactions. Prediction of the direction of spontaneous processes based on standard potentials. Factors affecting the order of the deposition of different metals during electrolysis (study of Daniell cell). Return of the received pieces of laboratory equipment.

Requirements:
Each week the laboratory session begins with a short test (not more than 20 minutes) based exclusively on the preparatory material of that week and the previous week and the results of the experiments carried out the previous week. With each short test a student can collect 25 points. Altogether there are eight short tests during the semester. Students are also required to write two
general tests (week 5 and week 11) which are based on the course material for weeks 1-4 and 5-10, respectively. Each general test is worth 50 points. Grading is based on a five-level scale: 1 (fail), 2 (pass), 3 (average), 4 (good), 5 (excellent). The final course grade is given based on the results of these tests, the quality of the laboratory notes and the quality of laboratory work. The average score from both the short tests and the general tests must be above 50 % to avoid a ‘fail’ final course grade. In order to pass the laboratory practice, a student should collect minimum 100 points from the short tests and minimum 50 points from the general tests. Students with ‘fail’ final course grade due to inadequate laboratory work have to retake the course the next year. Students with ‘fail’ final course grade due to low test results can re-take a comprehensive test exam in the examination period.

Those students, whose results are lower than 25% either from the short test or from the general test, cannot write a final exam, they will receive a ‘fail’ final course grade.

It is not allowed to miss any laboratory practices/seminars. If a student misses one or two lab practices, medical certification is needed. If a student misses three lab practices/seminars even for any medical reasons, the student’s lecture book won’t be signed and she or he has to retake the course next year. It is not possible to miss short tests at the beginning of the laboratory practice. If a student misses more than two short tests, the laboratory practice will not be accepted for him or her. The students cannot miss either of the general tests, otherwise no signature and final grade is given to the student.

Person responsible for course: Dr. Norbert Lihi, assistant research fellow, PhD

Lecturer: Dr. Norbert Lihi, assistant research fellow, PhD

<table>
<thead>
<tr>
<th>Title of course: Inorganic Chemistry I</th>
<th>ECTS Credit points: 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code: TTKBE0201_EN</td>
<td></td>
</tr>
</tbody>
</table>

Type of teaching, contact hours
- lecture: 2 hours/week

Evaluation: examination

Workload (estimated), divided into contact hours:
- lecture: 28 hours
- practice: -
- laboratory: -
- home assignment: -
- preparation for the exam: 56 hours

Total: 84 hours: 3 credit x 28 hours

Year, semester: 1st year, 2nd semester

Its prerequisite(s): TTKBE0101_EN

Further courses built on it: TTKBE0202_EN, TTKBL0201_EN, TTKBE0501_EN, TTKBE0502_EN, TTKBL0502_EN, TTKBE0204_EN

Topics of course

Literature
Compulsory:
Recommended:

Course objective/intended learning outcomes

a) Knowledge
- He/she fundamentally knows principles, procedures, properties, reactions and chemical processes of the p-group elements and inorganic chemistry related materials.

b) Abilities
- He/she is able to apply the most important terminology, theories, procedures of the given inorganic chemistry-related field when completing the relevant tasks.
- He/she is able to create fundamental models of inorganic chemical reactions, and processes.

c) Attitude
- He/she is open to learn and accept professional, technological improvement and innovation in his/her profession and convey it genuinely.
- He/she makes a decision in complex and unexpected cases by completely taking into account legal and ethical norms.

d) Autonomy and responsibility
- Even in unexpected decision-making situations he/she is capable of considering complex, fundamental questions from his/her professional field and elaborating them on the basis of the given sources.
- He/she confesses and represents the value system of the qualified chemists and chemical engineers profession with responsibility. He/she is open to critical remarks which are professionally well-founded.

Schedule:
1st week

2nd week

3rd week

General properties of the halogens. Physical properties, electronic structure, chemical reactivity, possible oxidation numbers. Interaction of the halogens with different solvents. Hydrate formation, chemical hydrolysis.

4th week
Characteristic chemical reactions of the halogens, interhalogen compounds, polyhalogenium ions, polyhalide anions. Structural aspects of interhalogen compounds, VSEPR theory to describe geometric structures. Halogen-containing minerals, natural resources. Biological role of halides. Laboratory scale and industrial production of the halogen elements. Most important groups of halides regarding their chemical bondings and lattices, physical properties.

5th week
Halogen-oxygen compounds, physical and chemical properties of halogen oxides, and methods of their synthesis, and practical uses. Halogen oxyacids and their salts. Oxidation numbers of the component atoms, laboratory scale and industrial productions. Chemical reactions of halogen oxides and oxoacids. Sterilization, drinking water treatment with halogen oxides and oxoacids.

6th week

7th week

8th week

9th week
Elements of the nitrogen group: appearance, electronic structure, physical properties, allotrops,

10th week

Halides and halogeno-complexes of the nitrogen-group elements. Composition, formation, structure, characteristic physical and chemical properties, reactivities. Practical uses.

Oxides and o xo-compounds of the nitrogen-group elements. Structure, formation, composition, physical and chemical properties. Electronic structure, spectral and magnetic properties. Laboratory-scale and industrial production, Ostwald synthesis. Acid-base properties.

Environmental and health issues of nitrogen oxides, role of NO in the human body.

11th week

Nitrogen and phosphorus oxoacids. Chemical composition, oxidation states, stabilities, physical properties, characteristic reactions, most important salts. Practical uses of nitric and phosphoric acids. Other oxides, oxoacids and oxoanions of other elements of the nitrogen group. Compounds with sulfur: sulfur nitrides, phosphorus sulfides, molecular structures, stabilities, physical and chemical properties, practical uses.

12th week

Comparison of the structure and stability, hydrolytic properties of the binary hydrides of the carbon group elements. Preparation of the hydrides, practical uses in the analytical chemistry.

Halides of the carbon group elements: Composition, hydrolysis, complex formation, geometry, nature of the bonds, redoxi properties and stabilities of the halides.

13th week

Carbon-nitrogen bond containing inorganic compounds: Cyanic acid and isocyanic acid and their salts. Thiocyanic acid and isothiocyanic acid and their salts. Properties, practical uses.

Elements of the boron group. Appearance, natural resources, most important minerals. Electronic structure, Lewis-acidity, physical and chemical properties, most important chemical reactions. Hybridization. Halides of the boron group elements. Properties, hydrolysis, complex formation, structure, practical uses. Industrial production of aluminum.

Requirements:
- for a signature
 Attendance at lectures is recommended, but not compulsory.
- for a grade
 The course ends in an examination.
 The examination starts with a qualification test. The minimum requirement to qualify for the examination is: 60 score. Below score 60 Grade 1 (Fail) is given.

<table>
<thead>
<tr>
<th>Score</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-59</td>
<td>fail (1)</td>
</tr>
<tr>
<td>60-100</td>
<td>qualified to the exam</td>
</tr>
</tbody>
</table>

The minimum requirement for the examination is 50 score. Based on the score, the grade for the examination is given according to the following table:

<table>
<thead>
<tr>
<th>Score</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-49</td>
<td>fail (1)</td>
</tr>
<tr>
<td>50-62</td>
<td>pass (2)</td>
</tr>
<tr>
<td>63-75</td>
<td>satisfactory (3)</td>
</tr>
<tr>
<td>76-88</td>
<td>good (4)</td>
</tr>
<tr>
<td>89-100</td>
<td>excellent (5)</td>
</tr>
</tbody>
</table>

If the score of any test is below 60, students can take a retake test in conformity with the EDUCATION AND EXAMINATION RULES AND REGULATIONS.

Person responsible for course: Dr. István Lázár, associate professor, PhD

Lecturer: Dr. István Lázár, associate professor, PhD

Title of course: Inorganic Chemistry II
Code: TTKBE0202_EN
ECTS Credit points: 3

Type of teaching, contact hours
- lecture: 2 hours/week

Evaluation: examination

Workload (estimated), divided into contact hours:
- lecture: 28 hours
<table>
<thead>
<tr>
<th>Practice</th>
<th>Laboratory</th>
<th>Home Assignment</th>
<th>Preparation for the Exam</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
<td>56 hours</td>
<td>84 hours</td>
</tr>
</tbody>
</table>

Year, semester: 2nd year, 1st semester

Its prerequisite(s): TTKBE0201_EN, TTKBE0301_EN, TTKBE0401_EN

Further courses built on it:
TTKBL0201_EN, TTKBE0501_EN, TTKBE0502_EN, TTKBL0502_EN, TTKBE0204_EN

Topics of course

Literature

Compulsory:

Recommended:

Course objective/intended learning outcomes

a) Knowledge
- He/she fundamentally knows principles, procedures, properties, reactions and chemical processes of the s-, d-, and f-group elements and inorganic chemistry related materials.

b) Abilities
- He/she is able to apply the most important terminology, theories, procedures of the given inorganic chemistry-related field when completing the relevant tasks.
- He/she is able to create fundamental models of inorganic chemical reactions, and processes.

c) Attitude
- He/she is open to learn and accept professional, technological improvement and innovation in his/her profession and convey it genuinely.
- He/she makes a decision in complex and unexpected cases by completely taking into account legal and ethical norms.

d) Autonomy and responsibility
- Even in unexpected decision-making situations he/she is capable of considering complex, fundamental questions from his/her professional field and elaborating them on the basis of the given sources.
- He/she confesses and represents the value system of the qualified chemists and chemical engineers profession with responsibility. He/she is open to critical remarks which are professionally well-founded.

Schedule:

1st week
General characterization of the metals, structure of the metals, metallic bond. Principles of band theory, conductors, semiconductors and insulators. Characteristic physical and chemical properties of the metals.

2nd week
Alkali metals: general characterization, physical and chemical properties, abundance, preparation and use. Hydrides, halogenides, oxides, hydroxides of alkali metals, salts formed with the most important oxoanions. Complexes of alkali metal ions, crown ethers and cryptands. Covalent compounds of the alkali metals.

3rd week
Alkali earth metals: general characterization, physical and chemical properties, abundance, preparation and use. Role of the alkali earth metals in the nature, biological effect of the metals and their ions. Special features of beryllium and its compounds. Hydrides, halogenides, oxides, hydroxides of alkali earth metals, salts formed with the most important oxoanions. Covalent compounds and complexes of the alkali metals.

4th week

5th week

6th week
Fundamentals of the crystal field theory, interpretation of the colors and magnetic behaviour of the complex compounds. High and low spin complexes. Definition and importance of crystal field stabilization energy (CFSE). Types of transition metal hydrides and their practical importance. Classification of transition metal halogenides based on their composition, structure and binding types. Some important halogenides of the transition metals.

7th week

8th week

9th week
Members of the chromium group, some important compounds. General characterization, trends in

10th week

Members of the manganese and iron groups, some important compounds. General characterization, trends in oxidation numbers, physical and chemical properties, occurrence, preparation and use. Manganese oxides, their derivatives and redox reactions of them. Industrial preparation of iron and steel. Oxides, halogenides and important complex compounds of iron, cobalt and nickel.

11th week

General characterization of the platinum group metals, trends in oxidation numbers, physical and chemical properties. Theoretical aspects of their preparation, some important practical use. Oxides and halogenides. Coordination chemistry of platinum group metal ions: oxidation states and practical use.

12th week

Members and the most important compounds of the copper and zinc groups. General characterization, trends in oxidation numbers, physical and chemical properties, occurrence, preparation and use. Practical importance of the metals, alloys. Oxides and halogenides. Chemical background of black and white photography. Important complex compounds. Environmental and biological role of the metals and their cations.

13th week

General characterization of the lanthanoids and actinoids, electronic configuration, oxidation numbers, physical and chemical properties, occurrence, preparation and use. Oxides and halogenides, important complex compounds. Physical and chemical properties of thorium and uranium, important compounds. Theoretical aspects of the use of nuclear power.

14th week

Requirements:
- for a signature

Attendance at lectures is recommended, but not compulsory.

- for a grade

The course ends in an examination.

The minimum requirement for the examination is 40 score. Based on the score, the grade for the examination is given according to the following table:

<table>
<thead>
<tr>
<th>Score</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-39</td>
<td>fail (1)</td>
</tr>
<tr>
<td>40-55</td>
<td>pass (2)</td>
</tr>
<tr>
<td>56-70</td>
<td>satisfactory (3)</td>
</tr>
<tr>
<td>71-85</td>
<td>good (4)</td>
</tr>
<tr>
<td>86-100</td>
<td>excellent (5)</td>
</tr>
</tbody>
</table>

If the score of any test is below 40, students can retake the test in conformity with the EDUCATION AND EXAMINATION RULES AND REGULATIONS.
Person responsible for course: Dr. Péter Buglyó, associate professor, PhD

Lecturer: Dr. Péter Buglyó, associate professor, PhD

<table>
<thead>
<tr>
<th>Title of course: Organic Chemistry I.</th>
<th>ECTS Credit points: 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code: TTKBE0301_EN</td>
<td></td>
</tr>
</tbody>
</table>

Type of teaching
- lecture: 2 hours/week
- practice: 1 hours/week
- laboratory: -

Evaluation: exam

Workload (estimated)
- lecture: 28 hours
- practice: 14 hours
- laboratory: -
- home assignment: 14 hours
- preparation for the exam: 40 hours
Total: 96 hours

Year, semester: 1st year, 2nd semester

Its prerequisite(s): General Chemistry I. TTKBE0101_EN

Further courses built on it: TTKBE0202_EN, TTKBL0201_EN, TTKBE0402_EN, TTKBG0402_EN, TTKL0401_EN, TTKBE0302_EN, TTKBE0501_EN, TTKBE0502_EN, TTKBE0601_EN, TTKBG0601_EN, TTKBE0204_EN, TTKBE0417_EN, TTKBG0614_EN, TTKBG0312_EN, MFVGE31V03_EN, TTKBE1111_EN

Topics of course
- Review the basic of organic chemistry basics
- Types and theories of chemical bonds
- Review the acid-base theories
- Basic concepts of isomerism and stereochemistry.
- Classification of organic chemical reactions.
- Functional groups and the basics of organic nomenclature.
- The structure, nomenclature, synthesis and reactions of alkanes, alkenes, alkynes, mono- and polycyclic, homo- and heteroaromatic hydrocarbons.

Literature

Compulsory:
1. Course material, concept and task collection for lectures, seminars in the e-learning system.

Recommended:
Course objective/intended learning outcomes

a) Knowledge
He/She knows the basic concepts and theories which are necessary to understand and interpret structure and reactivity of organic compounds (chemical bond, hybridization, resonance theory, isomerism) He/she knows the structure, physical and chemical properties and synthetic methods of saturated, unsaturated and aromatic hydrocarbons and He/She can apply these knowledges to solve chemical problems.

b) Abilities
- He/she knows and is able to apply his/her knowledge to solve simple tasks on the field of hydrocarbons.
- He/she is able to participate in professional communication on the field of structure, and chemical transformation of hydrocarbons.
- He/she is able to expand and/or develop his/her knowledge from the natural products.

c) Attitude
- He/she is open to getting new, scientifically proven knowledge on the subject, but to reject unsubstantiated or possibly misleading claims

d) Autonomy and responsibility
- He/she is able to independently perform the tasks of the course with professional guidance, and he/she can interpret and evaluate of the results obtained.

Schedule:

1st week
The definition and brief history of organic chemistry. Overview of the basic general chemical concepts needed for this subject. A brief summary of the theories of the chemical bond: the shared electron pair model, the valence bond model. Covalent and ionic bonds. The basics of LCAO-MO theories, types of atomic and molecular orbitals. Bi- and polycentric molecular orbitals, delocalization.

2nd week

3rd week
Description of functional groups in organic compounds. An overview of the most important organic compound groups based on their functional groups. The effect of functional groups on the electron structure of compounds.

4th week
The basic nomenclature systems in organic chemistry: common or trivial names and systematic nomenclature. Basic rules to generate systematic names of organic compounds; substitutive and
<table>
<thead>
<tr>
<th>Week</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>5<sup>th</sup> week</td>
<td>Functional class nomenclature. The rules to generate the names the groups derived from hydrocarbons. The rules to generate the name of unbranched and branched (saturated and unsaturated) hydrocarbons. Elemental reactions. Definitions of transition state, intermediates, Gibbs energy, kinetical and termodinamical parameters of chemical reactions.</td>
</tr>
<tr>
<td>7<sup>th</sup> week</td>
<td>Basics of stereochemistry: characterization of constitutional, conformational and configuration isomers. Chirality, types of chiral molecules. The concept of enantiomers and diastereomers, general comparison of their chemical and physical properties. Absolute and relative configuration. Optical activity. The representation of organic molecules. The absolute configuration of chiral compounds, Fischer and Cahn-Ingold-Prelog convention. The role of chirality in drug chemistry.</td>
</tr>
<tr>
<td>8<sup>th</sup> week</td>
<td>Characterization of the structures of alkanes and cycloalkanes. Review their conformational and physical properties. Chemical properties of alkanes, radical substitution, chain reaction. Statistical and regioselective halogenation and interpretation based on radical stability in alkane halogenation.</td>
</tr>
<tr>
<td>9<sup>th</sup> week</td>
<td>Sulphonation, sulphochlorination, nitration and oxidation of alkanes. The basic petrochemical processes (pyrolysis, cracking, isomerization) and their industrial significance. The most important natural sources and the synthetic methods of alkanes.</td>
</tr>
<tr>
<td>10<sup>th</sup> week</td>
<td>The characterization of the structure a of alkenes, cycloalkenes, di- and polyenes. The hindered rotation: characterization of E / Z isomers. Synthesis of alkenes, cycloalkenes. Physical and chemical properties of alkenes and cycloalkenes. Electrophilic and radical addition reactions and practical significance. Interpretation of the regioselectivity of the addition reactions; the Markovnikov rule.</td>
</tr>
<tr>
<td>11<sup>th</sup> week</td>
<td>Types of polymerization. Substitution in allylic position, interpretation of the stability of allylic intermediates. Oxidation of alkenes. Addition of conjugated dienes, partial and complete addition. 1,2 and 1,4 addition and its interpretation based on kinetic and thermodynamic control. Diels-Alder cycloaddition.</td>
</tr>
<tr>
<td>12<sup>th</sup> week</td>
<td>Characterization of the structure of alkynes and their physical properties. The stability and synthesis of alkynes. Chemical transformations of alkynes: C-H acidity, addition reactions and their significance. The role of acetylene in the chemical industry, coal-based chemical industry.</td>
</tr>
<tr>
<td>13<sup>th</sup> week</td>
<td>The concept and the interpretation of aromaticity. Neutral and charged homo and heteroaromatic systems. The type and mechanism of the most important aromatic electrophilic substitution reactions (halogenation, nitration, sulphonation, Friedel-Crafts acylation and alkylation).</td>
</tr>
<tr>
<td>14<sup>th</sup> week</td>
<td>The S<sub>EA</sub>, reactions of substituted benzene derivatives –the reactivity and regioselectivity. Classification of substituents and interpretation of their effect on reactivity and regioselectivity. Electrophilic substitution reactions of five- and six-membered heteroaromatic base compounds.</td>
</tr>
</tbody>
</table>
Addition reactions of monocyclic aromatic hydrocarbons. Reactions of aromatic hydrocarbons containing alkyl substituents, the stability of benzyl-type reactive intermediates. Most important representatives of polycyclic aromatic hydrocarbons.

Requirements:
- **for a signature**
 Attendance at lectures is recommended, but not compulsory.
 Attendance at seminars is compulsory. A student may not miss the seminar more than three times during the semester. In case of further absences, a medical certificate needs to be presented. In case a student does not do this, the subject will not be signed, and the student must repeat the course.
- **for a grade**
 The course ends in an examination.
 The exam grade is the result of the written exam.
 The minimum requirement for the examination respectively is 50%. The grade for the written exam is given according to the following table:

<table>
<thead>
<tr>
<th>Score</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-49</td>
<td>fail (1)</td>
</tr>
<tr>
<td>50-62</td>
<td>pass (2)</td>
</tr>
<tr>
<td>63-75</td>
<td>satisfactory (3)</td>
</tr>
<tr>
<td>76-87</td>
<td>good (4)</td>
</tr>
<tr>
<td>88-100</td>
<td>excellent (5)</td>
</tr>
</tbody>
</table>

If the score of any test below 50, students can take a retake test in conformity with the EDUCATION AND EXAMINATION RULES AND REGULATIONS.

Person responsible for course: László Dr Juhász, associate professor, PhD, dr. habil.

Lecturer: Éva Juhászné Dr. Tóth, senior lecturer, PhD; Krisztina Dr. Kónya, senior lecturer, PhD

<table>
<thead>
<tr>
<th>Title of course: Organic chemistry II.</th>
<th>ECTS Credit points: 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code: TTKBE0302_EN</td>
<td></td>
</tr>
</tbody>
</table>

Type of teaching, contact hours
- lecture: 2 hours/week
- practice: -
- laboratory: -

Evaluation: term mark

Workload (estimated), divided into contact hours:
- lecture: 28 hours
- practice: 14
- laboratory: -
- home assignment: 14 hours
- preparation for the exam: 40
Total: 96 hours

Year, semester: 2nd year, 1st semester

Its prerequisite(s): TTKBE0201_EN, TTKBE0301_EN, TTKBE0401_EN

Further courses built on it: TTKBE0303_EN, TTKBE0611_EN, TTKBE1212_EN,
Topics of course

Systematical overview the structure, physical, chemical properties of hydrocarbons possessing heteroatoms as halogenated hydrocarbons, organometallic derivatives, alcohols, phenols, ethers and their thio analogues; amines, nitro derivatives, diazonium salts, aldehyde, ketones, carboxylic acids and their derivatives, derivatives of carbonic acid

Literature

Compulsory:

1. Course material, concept and task collection for lectures, seminars in the e-learning system.

Recommended:

Course objective/intended learning outcomes

a) Knowledge

- He/she knows the structure, physical and chemical properties and synthetic methods of the most important organic compounds possessing heteroatoms (halogenated hydrocarbons, organometallic derivatives, alcohols, phenols, ethers and their thio analogues; amines, nitro derivatives, diazonium salts, aldehyde, ketones, carboxylic acids and their derivatives, derivatives of carbonic acid). He/she is able to apply his/her knowledge to solve simple tasks on the field of this compounds. He/she knows the application and practical significance of these derivatives, and their applicabilities

b) Abilities

- He/she is able to participate in professional communication on the field of structure, and chemical transformation of this field.
- He/she is able to expand and/or develop his/her knowledge from the natural products.

c) Attitude

- He/she is open to getting new, scientifically proven knowledge on the subject, but to reject unsubstantiated or possibly misleading claims

d) Autonomy and responsibility

- He/she is able to independently perform the tasks of the course with professional guidance, and he/she can interpret and evaluate of the results obtained.
Schedule:

1st week
Classification of halogenated hydrocarbons, characterization of their structure and physical properties. The effect of the structure of the hydrocarbon skeleton, and the quality of the halogen on the strength of the C-Hlq bond and reactivity. Synthesis of halogenated hydrocarbons.

2nd week
Reactions of halogenated hydrocarbons. Interpretation of decreased, normal and high reactivity of halogenated hydrocarbons. Nucleophilic substitution and elimination of halogenated hydrocarbons. Interpretation of the mechanism of these reaction (SN1, SN2; α- and β-elimination; E1, E2 and E1cB). Reaction of halogenated compounds with metals.

3rd week
The basics of chemistry of organometallic compounds. Their bonding system, the term "umpolung". Synthesis and reactivity of organometallic compounds. Organometallic compounds as nucleophiles and carbanion equivalents. C-C bond formation with organometallic reagents: Grignard compounds and their application. Synthesis and interconversion of organometallic compounds, transmetallation.

4th week
Classification and characterization of hydroxyl derivatives of hydrocarbons (alcohols, phenols) and their thio analogues. Interpretation of their physical properties derived from their bonding system. The acid-base properties of alcohols, phenols and thio analogues. Preparation of alcohols, ethers, phenols and thio analogues.

5th week

6th week
Overview of the organic compounds possessing C-N single bond. Classification of amines and characterization of their bonding systems. Interpretation of their physical derived from their bonding system. Synthesis of aliphatic and aromatic amines; industrial methods.

7th week

8th week
9th week

10th week

11th week

12th week

13th week
β-Dicarbonyl and β-oxo-carboxylic acid derivatives, C-H acidity and basic of enolate chemistry: formation of carbon-carbon bond, malonic ester, acetoacetic ester and cyanoacetic ester syntheses.

14th week

Requirements:
- for a signature
 Attendance at lectures is recommended, but not compulsory.
 Attendance at seminars is compulsory. A student may not miss the seminar more than three times during the semester. In case of further absences, a medical certificate needs to be presented. In case a student does not do this, the subject will not be signed, and the student must repeat the course.
- for a grade
 The course ends in an examination.
 The exam grade is the result of the written exam.
 The minimum requirement for the examination respectively is 50%. The grade for the written exam is given according to the following table:

<table>
<thead>
<tr>
<th>Score</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-49</td>
<td>fail (1)</td>
</tr>
<tr>
<td>50-62</td>
<td>pass (2)</td>
</tr>
<tr>
<td>63-75</td>
<td>satisfactory (3)</td>
</tr>
<tr>
<td>76-87</td>
<td>good (4)</td>
</tr>
</tbody>
</table>
If the score of any test below 50, students can take a retake test in conformity with the EDUCATION AND EXAMINATION RULES AND REGULATIONS.

Person responsible for course: László Dr. Juhász, associate professor, PhD, Habil.

Lecturer: Éva Juhászné Dr. Tóth, senior lecturer, PhD; Krisztina Dr. Kónya, senior lecturer, PhD

<table>
<thead>
<tr>
<th>Title of course</th>
<th>Organic chemistry II.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>TTKBL0311_EN</td>
</tr>
<tr>
<td>ECTS Credit points</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type of teaching, contact hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>lecture: -</td>
</tr>
<tr>
<td>practice: -</td>
</tr>
<tr>
<td>laboratory: 3 hours/week</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Evaluation</th>
<th>term mark</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Workload (estimated), divided into contact hours:</th>
</tr>
</thead>
<tbody>
<tr>
<td>lecture: -</td>
</tr>
<tr>
<td>practice: -</td>
</tr>
<tr>
<td>laboratory: 42 hours</td>
</tr>
<tr>
<td>home assignment: 14 hours</td>
</tr>
<tr>
<td>preparation for the exam: -</td>
</tr>
<tr>
<td>Total: 66 hours</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year, semester</th>
<th>2nd year, 1st semester</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Its prerequisite(s)</th>
<th>TTKBL0101_EN, TTKBE0301_EN, TTKBE0401_EN, TTKBE0201_EN</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Further courses built on it</th>
<th>-</th>
</tr>
</thead>
</table>

Topics of course

The aim of the course is to enable students to become familiar with the theoretical background of basic organic chemistry laboratory techniques and to learn how to apply them in practice, to deepen the theoretical knowledge gained in organic chemistry lectures and to understand the reactivity of functional groups by synthesizing simple preparations on a semi-micro scale and by carrying out test tube reactions. The other goal is to provide students with the right material knowledge and to understand and apply cleaning and identification techniques as typical organic chemistry activities.

Literature

Compulsory:

1. L. Juhász: Organic Laboratory Techniques and Manuals for Pharmacist Students, Debrecen, 2009

Recommended:

Course objective/intended learning outcomes

a) Knowledge
- He/She knows the properties of the most important chemicals, their productions and applications.
- He/She knows the chemical methods for measurements or analysis, their principles and instrumental background, and their applicabilities.

b) Abilities
- He/She is able to follow and control chemical processes and other technological steps concerning the quality management and quality control.
- He/She is able to treat new or unknown system based on the previous studies and experiences, learn and install new technologies and recognize mechanisms related to human health.
- He/She is able to run measurements both on laboratory and scaled up systems, and evaluate the obtained data at all steps in the development.

c) Attitude
- He/She makes effort to improve and apply the practical methods with new results and experiences.
- In each technological or laboratory steps he/she is always concerned to the current rules/laws of health prevention, safety and environmental questions.

d) Autonomy and responsibility
- Following directions he/she can work without supervision considering all quality and safety rules.

Schedule:
1st week
Introduction: Timetable and requirements. Receiving of laboratory equipment and list of tasks. Safety education.
Presentation of the device for recrystallization.
Presentation of gravity and vacuum filtration equipment.
Description of the operation of the rotary vacuum evaporator.
Recrystallization of acetanilide from water.
2nd week
Short written test.
Presentation of thin layer chromatography (TLC).
Presentation of determination of melting point.
Check of the purity of the compound recrystallized in previous practice by melting point and TLC.
Calculation of the yield of recrystallization.
Recrystallization of benzanilide from methanol.
Check of the purity of the recrystallized benzanilide by TLC.

3rd week
Short written test.
Description of liquid-liquid extraction.
Control the purity of the compound recrystallized in previous practice by melting point. Calculation of the yield of recrystallization.
Use of liquid-liquid extraction to separate m-dinitrobenzene and m-nitroaniline. Checking the success of the separation using TLC.

4th week
Short written test.
Presentation of equipment used for distillation at atmospheric and reduced pressure.
Distillation of acetone from KMnO₄ at atmospheric pressure.
Distillation of water in vacuum.

5th week
Short written test.
Presentation of steam distillation.
Isolation of S-(+)-Carvone from caraway and preparation of its 2,4-dinitrophenylhydrazone derivative.

6th week
Short written test.
Description of column chromatography. Separation of the mixture of acetanilide and m-dinitrobenzene by column chromatography.

7th week
Short written test.
Identification of hydrocarbons and organic halides using test tube reactions.
Reaction of hydrocarbons with bromine.
Reaction of hydrocarbons with bromine in the presence of UV light.
Friedel-Crafts test of aromatic hydrocarbons.
Baeyer test of unsaturated hydrocarbons.
Beilstein and alcoholic silver nitrate test of organic halides.
Identification of unknown compounds.

8th week
Short written test.
Presentation of a device used in reaction with three-necked round bottom flasks.
Preparation of benzamide and recrystallization of the product from water.

9th week
Short written test.
Check of the purity of benzamide by TLC and melting point measurement.
Calculation of the yield.
Preparation of cyclohexanone and cyclohexanone 2,4-dinitrophenyl-hydrazone (test tube variant).
Preparation of benzotriazole (test tube variant).

10th week
Short written test.
Preparation of acetylsalicylic acid and purification of the product by recrystallization.
Check of the purity of the product by TLC and melting point measurement.
Calculation of the yield.

11th week
Short written test.
Preparation of 4-chlorobenzoic acid and 4-chlorobenzyl alcohol. Check the purity of the product using TLC and melting point measurement.

12th week
Short written test.
Identification of hydroxyl derivatives of hydrocarbons using test tube reactions.
Solubility of alcohols and phenols.
Determination of order of substitution of the carbon carrying the OH group by Lucas probe.
Oxidation of alcohols with Jones reagent.
Reaction of diols or poliois with copper(II) ions.
Reaction of phenols and enols with iron(III) ions.
Iodoform test of 2-alkanols.
Identification of unknown compounds.

13th week
Short written test.
Identification of amino derivatives of hydrocarbons using test tube reactions.
The Hinsberg test.
Reactions of amines with nitrous acid.
The Rimini reaction of aliphatic primary amines
Complex formation of amine with Cu(II) ions.
Identification of unknown compounds.

14th week
Performing missed identification tasks (melting point measurement, TLC), yield calculation.
Cleaning and handovering of equipments.
Present the synthesized products to the instructor.
Evaluation.

Requirements:
Attendance at laboratory practice is mandatory. Before starting the laboratory work, students must write a short written test on their theoretical organic chemistry and practical knowledge as well as on the safety rules about the previous laboratory practice (15-20 minutes).

On the one hand, the term mark consists of the marks obtained for the identification of the unknowns and on the other hand the marks written before the practice, which are closely related to the laboratory exercises carried out the week before (15-20 minutes). Of course, a prerequisite for successful laboratory practice is the synthesis of all preparations. The final grade will be determined based on the average of the grades of tasks. A weighted average of the grades of subtasks will be calculated in the following manner:

- Short written test (70%)
- Activity in laboratory practice (15%)
- Identification of unknown compounds (15%)

Final grade: excellent (5): 90%; good (4): 75%; satisfactory (3): 60%; pass (2): 50%; fail (1): below 50%.

Person responsible for course: Marietta Vágvölgyiné Dr. Tóth, associate professor, PhD, Habil.

Lecturer: Marietta Vágvölgyiné Dr. Tóth, associate professor, PhD, Habil.

<table>
<thead>
<tr>
<th>Title of course: Organic chemistry III.</th>
<th>ECTS Credit points: 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code: TTKBE0303_EN</td>
<td></td>
</tr>
<tr>
<td>Type of teaching, contact hours</td>
<td></td>
</tr>
<tr>
<td>- lecture: 2 hours/week</td>
<td></td>
</tr>
<tr>
<td>- practice: -</td>
<td></td>
</tr>
<tr>
<td>- laboratory: -</td>
<td></td>
</tr>
<tr>
<td>Evaluation: term mark</td>
<td></td>
</tr>
<tr>
<td>Workload (estimated), divided into contact hours:</td>
<td></td>
</tr>
<tr>
<td>- lecture: 28 hours</td>
<td></td>
</tr>
<tr>
<td>- practice: -</td>
<td></td>
</tr>
<tr>
<td>- laboratory: -</td>
<td></td>
</tr>
<tr>
<td>- home assignment: 14 hours</td>
<td></td>
</tr>
<tr>
<td>- preparation for the exam: 40</td>
<td></td>
</tr>
<tr>
<td>Total: 96 hours</td>
<td></td>
</tr>
<tr>
<td>Year, semester: 2nd year, 2nd semester</td>
<td></td>
</tr>
<tr>
<td>Its prerequisite(s): TTKBE0302_EN</td>
<td></td>
</tr>
<tr>
<td>Further courses built on it: TTBBE2035_EN</td>
<td></td>
</tr>
</tbody>
</table>

Topics of course

Characterization of the building blocks of biomacromolecules (peptides and proteins, carbohydrates, nucleic acids, lipids) that form biological structures. Description and characterization of the most important biochemical reactions. Characterization of the structure of
the biomacromolecules. Overview of the chemical and instrumental methods which can be used for the structure elucidation of these type of compounds. Review the basic of their information storage and storage capacity, the relationship between structure and function. Chemical properties of their monomers and synthesis of biopolymers. The structure and biological effect/function of some other significant natural compounds (isoprenoids, flavonoids, alkaloids, antibiotics, vitamins, porphinase compounds).

Literature

Compulsory:
1. Course material, concept and task collection for lectures, seminars in the e-learning system.

Recommended:
Course objective/intended learning outcomes

a) Knowledge
- He/she knows the structure, physical and chemical properties and synthetic methods of monomers of biomacromolecules.
- He/she knows the structure and function of biomacromolecules.
- He/she knows the basic structure and function of other secondary metabolites.

b) Abilities
- He/she is able to participate in professional communication on the field of structure, and chemical transformation of this field.
- He/she is able to expand and/or develop his/her knowledge from the natural products.

c) Attitude
- He/she is open to getting new, scientifically proven knowledge on the subject, but to reject unsubstantiated or possibly misleading claims

d) Autonomy and responsibility
- He/she is able to independently perform the tasks of the course with professional guidance, and he/she can interpret and evaluate of the results obtained.

Schedule:
1st week
Primary and secondary metabolism. Classification of natural compounds. Types of biological structural materials, general characterization. Common features of the synthesis of biopolymers: group protection, activation, coupling reactions, requirements for protective groups, orthogonality

2nd week
Structure, synthesis and chemical properties of amino acids. Characterization of α-amino acids which are forming protein/peptides. Structure and determinations of peptides. Determination of amino acid sequence by chemical and enzymatic methods, possibility of automation.

3rd week

4th week
Classification, structure and nomenclature of carbohydrates. Basic configuration and conformational conditions of monosaccharides. Most important chemical properties of monosaccharides: mutarotation, transformation of oxo group and hydroxyl groups, synthesis of glycosides.

5th week
Most important representatives of di- and oligosaccharides (sucrose, maltose, cellobiose, lactose, cyclodextrins), factors determining their structure. Synthesis of di- and oligosaccharides, basic protecting groups and activation methods.

6th week
Derivatives of Peptides / proteins and low molecular weight carbohydrates: peptidoglycans, glycoproteins, their biological significance. The carbohydrate code.

7th week
Polysaccharides (cellulose, chitin, starch, glycogen, pectin, mucopolysaccharides).
Polysaccharides as structural materials and reserve nutrients. Derivatives of polysaccharides and proteins (proteoglycans). The industrial significance of polysaccharides.

8th week
Classification and characterization of nucleic acids, their building blocks. Synthesis of nucleosides and nucleotides. Primary, secondary and tertiary structure and biological function of DNA and RNA. The genetic code. Information content of the nucleotide, amino acid and carbohydrate code and their correlation. Nucleotide coenzymes.

9th week
Classification and characterization of lipids, their structure, their biological role. Basics of the biosynthesis of fats, phospho- and glycolipids.

10th week
Isoprenes, terpenoids and carotenoids. The basics of their biosynthesis, and most important representatives of terpenoids. The chemical background of vision. Structure, classification of steroids, basics of their biosynthesis, their major representatives and their biological function.

11th week
Classification and structure of phenylpropanoids. The chemical synthesis of their basic skeletons. Structure and biological significance of flavonoids.

12th week
Classification of alkaloids and structure and function of their most important representatives. Alkaloids as drugs and medicines.

13th week
Definition of symbiosis, antibiosis. Definition and classification of antibiotics: β-lactam, amino acid or peptide, glycoside type antibiotics, polycyclic antibiotics. Preparation of antibiotics: fermentation, semi-synthetic and synthetic derivatives. The most important mode of action of antibiotics.

14th week
The structure, biosynthesis and biological role of porphyrins. Structure, biological role and metabolism of chlorophyll and hemoglobin. Classification of vitamins, their structure, their natural sources and their biological functions.

Requirements:
- for a signature
Attendance at lectures is recommended, but not compulsory. A student may not miss the lecture more than three times during the semester. In case of further absences, a medical certificate needs to be presented. In case a student does not do this, the subject will not be signed and the student must repeat the course.
- for a grade
The course ends in an oral exam in the exam period.

Person responsible for course: László Dr. Juhász, associate professor, PhD, dr. habil
Lecturer: László Dr. Juhász, associate professor, PhD, dr. habil.

Title of course: Biochemistry I.
Code: TTBBE2035_EN
ECTS Credit points: 3
Type of teaching, contact hours
- lecture: 2 hours/week
- seminar: -
- laboratory: -

Evaluation: exam

Workload (estimated), divided into contact hours:
- lecture: 28 hours
- practice: -
- laboratory: -
- home assignment: 28 hours
- preparation for the exam: 40 hours
Total: 96 hours

Year, semester: 3rd year, 1st semester

Its prerequisite(s): TTKBE0303_EN

Further courses built on it: TTKBL0303_EN, TTBE0304_EN

Topics of course

Literature

Compulsory:

Recommended:

Course objective/intended learning outcomes

a) Knowledge
- He/she fundamentally knows the basic principles of biochemistry.
- He/she expansively knows the areas of metabolism, bioregulation, and glycobiology.

b) Abilities
- He/she is able to apply the most important terminology, theories of the given biochemical field
when completing the relevant tasks.

- He/she is able to understand scientific publications in the field of biochemistry.

c) Attitude

- He/she is open to learn and accept professional, technological improvement and innovation in his/her profession and convey it genuinely.
- He/she makes a decision in complex and unexpected decision cases by completely taking into account legal and ethical norms.

d) Autonomy and responsibility

- Even in unexpected decision-making situations he/she is capable of considering complex, fundamental questions from his/her professional field and elaborating them on the basis of the given sources.
- He/she is open to critical remarks which are professionally well-founded.

Schedule:

8th week: Gluconeogenesis. Cori cycle. The pentose phosphate pathway.

9th week: Citric acid cycle. Pyruvate dehydrogenase complex. The citric acid cycle is a source of biosynthetic precursors. Control of the citric acid cycle.

11th week: Glycogen metabolism. Glycogen degradation and synthesis. The coordinated control of synthesis and breakdown.
12th week: Fatty acid metabolism. Oxidation of fatty acids and unsaturated fatty acids. Energetics of fatty acid oxidation. Synthesis of ketone bodies.

13th week: Biosynthesis of fatty acids. The elongation cycle. Biosynthesis of cholesterol.

14th week: Digestion of proteins. Amino acid degradation. Transamination and oxidative deamination. The urea cycle. The link between the urea and the citric acid cycle. The fates of the carbon skeletons of amino acids.

Requirements:
- for a signature

Attendance at lectures is recommended, but not compulsory.

During the semester there are two tests: the mid-term test in the 8th week and the end-term test in the 15th week. Students have to sit for the tests
- for a grade

The course ends in an examination. Based on the average of the grades of the designing tasks and the examination, the exam grade is calculated as an average of them:
- the average grade of the two designing tasks
- the result of the examination

The minimum requirement for the mid-term and end-term tests and the examination respectively is 60%. Based on the score of the tests separately, the grade for the tests and the examination is given according to the following table:

<table>
<thead>
<tr>
<th>Score</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-59</td>
<td>fail (1)</td>
</tr>
<tr>
<td>60-69</td>
<td>pass (2)</td>
</tr>
<tr>
<td>70-79</td>
<td>satisfactory (3)</td>
</tr>
<tr>
<td>80-89</td>
<td>good (4)</td>
</tr>
<tr>
<td>90-100</td>
<td>excellent (5)</td>
</tr>
</tbody>
</table>

If the score of any test is below 60, students can take a retake test in conformity with the EDUCATION AND EXAMINATION RULES AND REGULATIONS.

- an offered grade:
 it may be offered for students if the average grade of the two designing tasks is at least satisfactory (3) and the average of the mid-term and end-term tests is at least satisfactory (3). The offered grade is the average of them.

Person responsible for course: Dr. János Kerékgyártó, senior research fellow, CSc, PhD

Lecturer: Dr. János Kerékgyártó, senior research fellow, CSc, PhD

Title of course: Introduction to economics

Code: TTBEBVVM-KT1-EN

ECTS Credit points: 3

Type of teaching, contact hours
- lecture: 2 hours/week
- practice: -
- laboratory: -
Evaluation: exam

Workload (estimated), divided into contact hours:
- lecture: 28 hours
- practice: -
- laboratory: -
- home assignment: -
- preparation for the exam: 62 hours
Total: 90 hours

Year, semester: 1st year, 1st semester (or any later fall semester)

Its prerequisite(s): -

Further courses built on it: TTBEBVM-KT3_EN

Topics of course

10 principles of economics, how markets work: demand and supply analysis, the effects of governmental interventions, cost of production, profit-maximizing behaviour of firms, analysis of perfect competition and monopoly

Literature

Course objective/intended learning outcomes

a) Knowledge
- He/She knows the chemistry and chemical technology related economical, management environmental safety, quality assurance (QC/QA), informatics and intellectual property rules and laws.

b) Abilities
- He/She capable to apply the learned methods, models and plannings of chemical technology and chemical processes through calculations.

c) Attitude
- He/She is open to accept environmentally efficient technologies, and for the application of new, innovative and advanced methods in economy.
- He/She can collaborate with other people and discuss their opinions in problem solving processes before making new decisions.

d) Autonomy and responsibility
- He/She follows the personal improvements and helps others to achieve their professional goals.
- He/She shares experiences with others to help them.

Schedule:
1st week
Introduction: Basic concepts and fundamental questions of economics
SR: Understanding the basic concepts and the economic way of thinking
2nd week
Human needs, scarcity, inputs, trade and its benefits
SR: Knowing the concept of scarcity and how free-will trade makes everyone better off

3rd week
Principles of economics
SR: Understanding the meaning of the 10 main principles

4th week
Production possibilities frontier, opportunity cost
SR: Knowing the role of opportunity cost in the model of PPF curve

5th week
Demand and Supply
SR: Understanding the model of market, able to derive the changes of variables

6th week
Market allocation
SR: Able to characterize the equilibrium and disequilibrium

7th week
Welfare economics
SR: Concept of consumer and producer surplus and Dead Weight Loss

8th week
Application: Governmental interventions
SR: Able to identify the effects of government’s interventions on market and the welfare of the society

9th week
Cost of production
SR: The main types of cost and their relationship

10th week
Competitive industry I.
SR: Criteria of perfect competition, and profit-maximization

11th week
Competitive industry II.
SR: Welfare effects and industry in the long run

12th week
Monopoly I.
SR: Criteria of monopoly, and profit-maximization

13th week
Monopoly II.
SR: Understanding the welfare effects of monopoly

14th week
Summary, discussion of questions emerging during the semester.
SR: --

Requirements:
- for a signature
There is no requirement for a signature.
- for a grade
Assessment is based on a written exam which will be evaluated according to the following grading schedule:
 0 -50\% – fail (1)
 50\%+1 point -63\% – pass (2)
 64\% -75\% – satisfactory (3)
 76\% -86\% – good (4)
 87\% -100\% – excellent (5)

Person responsible for course: Dr. Judit Kapás, professor

Lecturer: Dr. István Kovács, assistant professor

INTRODUCTION TO BUSINESS TTBEBVVM-KT2 EN

Title of course: Basics of Civil Law I
Code: TTBEBVVM-JA1_EN
ECTS Credit points: 2

Type of teaching, contact hours
- lecture: 2 hours/week
- practice: -
- laboratory: -

Evaluation: exam

Workload (estimated), divided into contact hours:
- lecture: 28 hours
- practice: -
- laboratory: -
- home assignment: 12 hours
- preparation for the exam: 20 hours
Total: 60 hours

Year, semester: 2nd year, 2nd semester

Its prerequisite(s): -

Further courses built on it: Basics of Civil Law II. (TTBEBVVM-JA2)
Topics of course

The course introduces students to the basic principles of civil law in order to provide up to date knowledge on the most important institutions of private law to engineers. During the course, the following topics of civil law are discussed:
- law of natural persons (legal capacity, capacity to act);
- personality rights and their protection;
- company laws in the EU (formation, structure);
- consumer protection laws in the EU;
- general rules on contracts and obligations;
- proprietary rights.

Literature

Compulsory:

Course objective/intended learning outcomes

a) Knowledge
- He/She knows the chemistry and chemical technology related economical, management environmental safety, quality assurance (QC/QA), informatics and intellectual property rules and laws.

b) Abilities
- He/She is able to treat new or unknown system based on the previous studies and experiences, learn and install new technologies and recognize mechanisms related to human health.
- He/She is capable on conducting basic chemical engineering tasks.
- He/She makes effort to keep his/her chemical engineering knowledge updated related to his/her professional goals.

c) Attitude
- During his/her work he/she committed to apply the quality concerns including the new assurances.

d) Autonomy and responsibility
- He/She shares experiences with others to help them.

Schedule:

<table>
<thead>
<tr>
<th>Week</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>Distinction between private and public laws.</td>
</tr>
<tr>
<td>2nd</td>
<td>General principles of civil law: good faith, fault-based liability</td>
</tr>
<tr>
<td>3rd</td>
<td>Law of natural persons: legal capacity and capacity to act</td>
</tr>
<tr>
<td>4th</td>
<td>Law of legal entities (company law) I.: Formation</td>
</tr>
</tbody>
</table>
5th week
Law of legal entities (company law) I.: Structure
6th week
Personality rights and privacy laws
7th week
Consumer rights in the EU
8th week
Distance selling, e-commerce laws
9th week
Contract formation
10th week
Breach of the contract
11th week
Remedies to a breach scenario
12th week
Calculation of damages
13th week
Rights to property
14th week
Summary

Requirements:
- for a signature
Attendance at lectures is compulsory.
Students have to submit their solutions to two hypotheticals as homework assignments during the semester.

- for a grade
The course ends in a written examination.
The minimum requirement for the written exam is 60%. Based on the score of the exam, the grade is given according to the following table:

<table>
<thead>
<tr>
<th>Score</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-59</td>
<td>fail (1)</td>
</tr>
<tr>
<td>60-69</td>
<td>pass (2)</td>
</tr>
<tr>
<td>70-79</td>
<td>satisfactory (3)</td>
</tr>
<tr>
<td>80-89</td>
<td>good (4)</td>
</tr>
<tr>
<td>90-100</td>
<td>excellent (5)</td>
</tr>
</tbody>
</table>

If the score of the exam is below 60, students can retake it in conformity with the EDUCATION AND EXAMINATION RULES AND REGULATIONS.

Person responsible for course: Dr. habil. Tamás Fézer, associate professor, PhD

Lecturer: -

Title of course: Basics of Civil Law II
Code: TTBEBVVM-JA2_EN
ECTS Credit points: 2

Type of teaching, contact hours
- lecture: 2 hours/week
Evaluation: exam

Workload (estimated), divided into contact hours:
- lecture: 28 hours
- practice: -
- laboratory: -
- home assignment: 12 hours
- preparation for the exam: 20 hours
Total: 60 hours

Year, semester: 3rd year, 1st semester

Its prerequisite(s): Basics of Civil Law I. (TTBEBVVM-JA1)

Further courses built on it: -

Topics of course

The course introduces students to intellectual property laws and their protection in a European and international level. The rules of international sales law, dispute settlement mechanisms and transportation are also discussed in order to grant better understanding on the legal background of technological inventions and commercial activities related to them.

Literature

Compulsory:

Course objective/intended learning outcomes

a) Knowledge
- He/She knows the chemistry and chemical technology related economical, management environmental safety, quality assurance (QC/QA), informatics and intellectual property rules and laws.

b) Abilities
- He/She is able to treat new or unknown system based on the previous studies and experiences, learn and install new technologies and recognize mechanisms related to human health.
- He/She is capable on conducting basic chemical engineering tasks.
- He/She makes effort to keep his/her chemical engineering knowledge updated related to his/her professional goals.

c) Attitude
- During his/her work he/she committed to apply the quality concerns including the new assurances.

d) Autonomy and responsibility
- He/She shares experiences with others to help them.

Schedule:

1*st* week
The nature of IP laws in Europe.

2*nd* week
Copyright law in the EU I.

3*rd* week
Copyright law in the EU II.

4*th* week
Patent rights.

5*th* week
Patent restrictions and commercial chains.

6*th* week
Trademark protection.

7*th* week
Contractual relations to IP law.

8*th* week
Insurance Laws.

9*th* week
Dispute settlement mechanisms.

10*th* week
International commercial arbitration.

11*th* week
International Sales Law I.

12*th* week
International Sales Law II.

13*th* week
Transportation laws.

14*th* week
Summary

Requirements:

- for a signature

Attendance at lectures is compulsory.

Students have to **submit their solutions to two hypotheticals as home work assignments during the semester**.

- for a grade

The course ends in a written **examination**.

The minimum requirement for the written exam is 60%. Based on the score of the exam, the grade is given according to the following table:

<table>
<thead>
<tr>
<th>Score</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-59</td>
<td>fail (1)</td>
</tr>
<tr>
<td>60-69</td>
<td>pass (2)</td>
</tr>
<tr>
<td>70-79</td>
<td>satisfactory (3)</td>
</tr>
<tr>
<td>80-89</td>
<td>good (4)</td>
</tr>
</tbody>
</table>
Title of course: History and Structure of the EU
Code: TTTBE0030-K1
ECTS Credit points: 1

Type of teaching, contact hours
- lecture: 1 hour/week
- practice: -
- laboratory: -

Evaluation: exam

Workload (estimated), divided into contact hours:
- lecture: 14 hours
- practice: -
- laboratory: -
- home assignment: -
- preparation for the exam: 40 hours
Total: 54 hours

Year, semester: 1st year, 1st semester

Its prerequisite(s): -

Further courses built on it: -

Topics of course
The aim of the course is to give an overall picture for the students of the history of the development of the Community and the operation of its institutional system. It also aims at introducing the students to the enlargement process and the most important cooperation areas. On the level of EU policies, the issues of agriculture, regional policy, Economic and Monetary Union and the Schengen Area are discussed. The primary goal is that the future diploma holders have realistic knowledge about the functioning of the European Union, and of the international background of the Hungarian EU membership.

Literature

Person responsible for course: Dr. habil. Tamás Fézer, associate professor, PhD

Lecturer: -

90-100 excellent (5)
If the score of the exam is below 60, students can retake it in conformity with the EDUCATION AND EXAMINATION RULES AND REGULATIONS.
Course objective/intended learning outcomes

a) Knowledge
- knows the development of the European integration process, the institutional and decision-making systems, the operation of the major common policies, the criteria and impacts of the EU membership
- knows the unique characteristics of the fifth enlargement, the Copenhagen criteria with their special features, and the geopolitical role of East Central Europe
- knows the principles applied during the formation of the institutional system; understands the attempts in order to achieve the classic democratic share of power together with its deficit; knows the elements taken from the European Coal and Steel Community and he essence of the reform process
- is aware of the need for creating common policies, their history, the reform attempts and the peculiarities of the accession of Hungary
- knows the factors leading to the migration phenomena; knows the attempts made by the Community and the Member States in crisis management
- knows the plans and potential scenarios concerning the future of the Community; sees the need for reforms, knows about the Brexit and can reflect on its effects

b) Abilities
- has the ability to analyse the relations in terms of the EU membership of Hungary, the impacts of the membership and the tasks generated by it
- has the ability to treat the basic relationships of general geographic disciplines together with the results of economics, political sciences and jurisprudence.
- has the ability to apply the acquired knowledge of geography to solve practical problems
- based on his/her basic knowledge of social sciences, he/she is able to interpret the spatial results of related disciplines

c) Attitude
- endeavours to get a deeper knowledge of the theories, and principles related to the European Union and seeks for relations with own experience
- with the application of the knowledge obtained, aims to get closer knowledge, to describe and explain the observable social phenomena
- is open to scientific exchange of views, professional co-operation, and aims to find solutions for his duties in cooperation with the collaborators through regarding their thoughts and opinion, if possible
- is ready to increase knowledge and to continue studies on a higher level

d) Autonomy and responsibility
- sets up position and brings decisions autonomously relying on technical sources in the issues related to the European Union
- takes over the values of his/her profession with responsibility, in the process of arranging assignments co-operates with experts representing other specialty fields
- takes responsibility for the professional work carried out

Schedule:

1st week
<table>
<thead>
<tr>
<th>Week</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>4th</td>
<td>Specific features of the enlargements after the turn of the millennium. Transformation of East Central Europe, and the unique features of its membership. Copenhagen criteria, pre-accession funds, prolonged negotiation process. Brexit.</td>
</tr>
<tr>
<td>5th</td>
<td>History and principles of the creation of the institutional system. Taking-over the institutional system of the European Coal and Steel Community. Tasks of the most important institutions, operational mechanism, democratic deficit. Reform process of the institutional system, concepts laid down in the Constitutional Treaty. Decision-making in the EU.</td>
</tr>
<tr>
<td>9th</td>
<td>Judicial co-operation in the Community. Legal order in the European Union. Role of the primary EU legislation in the European Community. European Community justice. Institutions serving the needs of judicial co-operation.</td>
</tr>
<tr>
<td>12th</td>
<td>EU Budget: revenue side. Components of the EU budget and recent changes in the proportions.</td>
</tr>
</tbody>
</table>
History of the EU budget. Budget revenues: duties, value-added tax (VAT), gross national product (GNP) sources.

12th week
Expenditures: agricultural policy, structural funds, external aid, research and development, pre-accession assistances, administrative expenditures. Economic characteristics. Budget procedure.

13th week
Migration and the European Union. Theoretical background to the migration crisis in 2015 and its practical consequences. History of the migration routes and movements. Natural and social (political) causes contributing to the crisis situation.

14th week

Requirements:
- for a signature
 Attendance at lectures is recommended, but not compulsory.
- for a grade
 The course ends in a written examination.

Person responsible for course: Dr. Károly Teperics, senior lecturer, PhD
Lecturer: Dr. Klára Czimre, senior lecturer, PhD

<table>
<thead>
<tr>
<th>Title of course: Engineering Ethics</th>
<th>ECTS Credit points: 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code: TTBEVEM-MK1_EN</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type of teaching, contact hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>- lecture: 2 hours/week</td>
</tr>
<tr>
<td>- practice: -</td>
</tr>
<tr>
<td>- laboratory: -</td>
</tr>
</tbody>
</table>

Evaluation: term grade

Workload (estimated), divided into contact hours:
- lecture: 28 hours
- practice: -
- laboratory: -
- home assignment: 42 hours
- preparation for the exam: 20 hours
Total: 90 hours

Year, semester: 1st year, 1st semester
Its prerequisite(s): -
Further courses built on it:

Topics of course
The course is intended to introduce the study of ethics, the branch of philosophy that aims to
understand what actions are right and wrong, what states of affairs are good and bad, and what traits of personality are desirable and undesirable. Our central question will be “What should I (morally) do?” Similarly, although it is impossible to separate discussion of ethical theory from its application to particular moral problems, this course will emphasize the former. The most well-developed and carefully formulated ethical theory that addresses our central question is utilitarianism: what I should do is to make the world a better place. In the second half we review of the growth and development of the profession, engineering ethics, obligations to employers and peers, limits of professional responsibility, codes of ethics and enforcement. Traditional function of engineering societies. Ethical engineers and the low, the public interest. Case studies.

Literature

Compulsory:
- Charles E. Harris, Michael S. Pritchard, Michael J. Rabins: Engineering Ethics: Concepts and Cases, 2008 - 313 pages
- Keith Goore: Ethics in the Workplace. Thompson Learning, 2007

Recommended:

Course objective/intended learning outcomes

a) Knowledge
- He/she confesses and represents the value system of the engineering profession with responsibility. He/she is open to critical remarks which are professionally well-founded.
- During completing his/her professional tasks he/she is cooperating with experts from other professional fields (primarily that of engineering but also economics and law).
- He/she shares experience with his/her co-workers to support their development.

b) Abilities
- He/she shares experience with his/her co-workers to support their development.
- He/she takes the responsibility for the consequences of his/her engineering calculations, suggestions based on these calculations and his/her decisions.

c) Attitude
- He/she makes a decision in complex and unexpected decision cases by completely taking into account legal and ethical norms.

d) Autonomy and responsibility
- Even in unexpected decision-making situations he/she is capable of considering complex, fundamental questions from his/her professional field and elaborating them on the basis of the given sources.
- He/she keeps track of facilitating the professional development of his/her co-workers, assists them with such endeavours by applying the principle of equal rights to accessibility.

Schedule:

1st week
Lecture: Code of engineering ethics. Right to engineering service.

2nd week
Lecture The engineer’s obligations to society. Obligations to the profession, employers and client.

3rd week
Lecture: Roles of engineering societies in ethics.

4th week

Lecture: Ethical behavior versus management. Internal and external procedures for considering dissenting views.

5th week - 14th week:

Lecture: Case studies. Discussing and analysing the case studies in terms of engineering ethics.

Requirements:

- for a signature

Participation at **lecture** is compulsory. Student must attend the lecture and not miss more than three practice during the semester. In case a student misses more than three, the subject will not be signed and the student must repeat the course. Student can’t make up a lecture with another group. The attendance on lecture will be recorded by the lecturer. Being late is counted as an absence. In case of further absences, a medical certificate needs to be presented. Missed lecture should be made up for at a later date, to be discussed with the tutor. Active participation is evaluated by the lecture in every lecture. If student’s behavior or conduct doesn’t meet the requirements of active participation, the lecturer may evaluate their participation as an absence due to the lack of active participation in class.

Each student must give one small **presentation about a case study** during the semester. The presenter has to show his or her ability to present the case study clearly, focus on the most important parts in a concise manner and answer the questions raised by the audience or the lecture. Student has to analyse his or her case study in terms of ethical behavior, obligation to the profession, to the society, to the employer and client.

- for a grade

The course ends in **mid-semester grade**. Based on the marks of the presentation and the activity of the student during the lecture, the mid-semester grade is determined.

Person responsible for course: Dr. Zsolt Tiba, college professor, PhD

Lecturer: Dr. Zsolt Tiba, college professor, PhD

Title of course: Management of Value Creating Processes

Code: TTBEBVM-KT4_EN

ECTS Credit points: 3

Type of teaching, contact hours

- lecture: 2 hours/week
- practice: -
- laboratory: -

Evaluation: exam

Workload (estimated), divided into contact hours:

- lecture: 28 hours
- practice: -
- laboratory: -
- home assignment: 22
Preparation for the exam: 40 hours

Total: 90 hours

<table>
<thead>
<tr>
<th>Year, semester:</th>
<th>1st year, 2nd semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Its prerequisite(s):</td>
<td>-</td>
</tr>
<tr>
<td>Further courses built on it:</td>
<td>TTBEBVM-KT6_EN</td>
</tr>
</tbody>
</table>

Topics of course

- Introduction to operations management.
- Strategy.
- Decision analysis support tools.
- Quality management.
- Process capability and statistical process control.
- Acceptance sampling.
- Designing products.
- Designing services.
- Process design.
- Capacity and facility planning.
- Facility location.
- HR management.
- Work measurement.
- Project management.

Literature

Compulsory:

Recommended:

Course objective/intended learning outcomes

a) Knowledge
- He/She knows the chemistry and chemical technology related economical, management environmental safety, quality assurance (QC/QA), informatics and intellectual property rules and laws.
- He/She knows has a knowledge on the data mining, literature browsing and the ethical concerns of chemical engineering.

b) Abilities
- He/She is able to apply those directives that necessary to operate instruments and control processes in a safe, cost effective way as well as avoid any problems causing health issues.
- He/She is able to follow and control chemical processes and other technological steps concerning the quality management and quality control.
- He/She is able to collect and organize, understand information about the health prevention, keeping track on new results, and apply them to make cost and environmentally effective, healthy working areas.

c) Attitude
- He/She is open to accept environmentally efficient technologies, and for the application of new, innovative and advanced methods in economy.
- He/She can collaborate with other people and discuss their opinions in problem solving processes before making new decisions.

d) Autonomy and responsibility
- He/She follows the personal improvements and helps others to achieve their professional goals.
– He/She shares experiences with others to help them.

Schedule:

1st week

TE: Should know the basic functions and features of the value creating processes. Should understand the process of the evolution of management.

2nd week
Strategy. The steps of strategy formulation: primary task, core competencies, order winners and order qualifiers, positioning the firm, and strategy deployment. Hoshin kanri and balance scorecard as methods of strategy deployment. Operations strategy.

TE: Should know the steps of strategy formulation. Should understand the relationships between strategy deployment and business development.

3rd week

TE: Should use the decision criteria to mitigate the risk. Should know the difference between pessimistic and optimistic decisions.

4th week

TE: Should know the methods of quality measurement and the techniques of quality improvements. Should be able to conform to the changing demand of the customer.

5th week
Process capability and statistical process control. The role of process control in the quality management. Attribute data and variable data. Construction and usage of process control charts: p, c, x mean and R diagrams. Tolerances and process capability.

TE: Should know how to control production and service processes using process control charts. Should understand the importance of preventing production and service processes from defects.

6th week

TE: Should know the risk of product acceptance and the techniques of sample taking as well as should be able to deduce the features of the base population from the analysis of the samples.

7th week
Product design. The product design process, idea generation, feasibility study, form design,
functional design, reliability, maintainability, usability, and production design. Design for environment, and design for robustness.

TE: Should know the steps and interrelations of the product design. Should understand the importance of product development to adapt to the continuously changing demand of customers.

8th week
Service design. The service economy. The service design process. Tools for service design. Waiting line analysis for service improvement. Operating characteristics of the queueing system, traditional cost relationships in waiting line analysis. Psychology of waiting, queueing models.

TE: Should know the characteristics of services and the tools for service design. Should able to understand the effect of waiting lines on the service provider and can improve the queueing system.

9th week

TE: Should know the steps of process design. Should know how to select the best production or service process using adequate methods. Should understand the interrelations between the importance of process plan, process selection and business competitiveness.

10th week

TE: Should know the main types of facility layouts and the means of their designs. Should understand the relationship between the facility layout and the capacity utilization.

11th week
Facility location decision support tools. The types of facilities. Site selection. The factors of the global supply chain. Location analysis techniques: location factor rating, center-of-gravity technique, and load-distance technique.

TE: Should know the types of facilities, the factors that influence facility locations and the techniques of facility locations. Should understand the relationship between geographic location of facilities and efficient operation of facilities.

12th week
Human resources in the operations management. HR and quality management. The changing nature of HR management. Contemporary trends in HR management. Management of diversities in HR. Job design, job analysis and the learning curve.

TE: Should know the characteristics of modern HR management and the methods of work design and work analysis. Should understand the role of human resources as the primary resource in business operations.

13th week
Work measurement decision analysis support Tools. Time studies: stopwatch study, normal time, number of cycles, elemental time files, and predetermined motion times. Work sampling.
TE: Should know the traditional work measurement methods, stopwatch study and work sampling. Should understand that the traditional methods are needed presently mainly in services.

14th week

Project management. The elements of a project plan. Global differences in project management. The control of projects: time, cost, performance, and communication. Project planning with Gantt chart and CPM/PERT. Microsoft Project. Project crashing, time-cost analysis.

TE: Should know the characteristics of projects, the procedure of project planning and the methods (Gantt diagram, CPM/PERT, Microsoft Project). Can control the project implementation. Should understand the importance of project management in the areas of production, services and researches.

Requirements:
- For a signature
 Attendance at lectures is recommended, but not compulsory.
- For a grade
 The course ends in an examination in the exam period.
 The minimum requirement for the examination is 60%. The grade for the examination is given according to the following table:
 - Score Grade
 - 0-59 fail (1)
 - 60-69 pass (2)
 - 70-79 satisfactory (3)
 - 80-89 good (4)
 - 90-100 excellent (5)

 An offered grade:
 It may be offered to students if they solve problems at lectures and attend lectures on a regular basis (do not miss more than 1/3 of the lectures). The grade is the average of the papers filed in the semester, the grade is in accordance with the table above.

Person responsible for course: Dr. Miklós Pakurár, associate professor, PhD

Lecturer: Dr. Miklós Pakurár, associate professor, PhD

Title of course: Analytical Chemistry I.
Code: TTKBE0501_EN
ECTS Credit points: 3

Type of teaching, contact hours
- lecture: 2 hours/week

Evaluation: examination

Workload (estimated), divided into contact hours:
- lecture: 28 hours
- practice: -
- laboratory: -
- home assignment: -
- preparation for the exam: 56 hours
Total: 84 hours: 3 credit x 28 hours
Year, semester: 2nd year, 1st semester

Its prerequisite(s): TTKBE0201_EN, TTKBE0301_EN, TTKBE0401_EN

Further courses built on it: TTKBL0512_EN

Topics of course

Literature

Compulsory:
1) Syllabus provided by the tutor
3) Vogel's Qualitative Inorganic Analysis, (ed. Gy. Svehla), Longmann, 2007

Course objective/intended learning outcomes

a) Knowledge
- He/she knows the basic terms, the application fields of analytical chemistry.
- He/she knows the basics of the theory and practice of various analytical methods.
- He/she knows the basics of various separation techniques.
- He/she knows the practical application of various atomic spectrometric, UV-Vis and pH-potentiometric methods.

b) Abilities
- He/she is capable of setting up and carrying out analytical measurements based on classical titrimetric methods. He/she understands the details of the analytical application of chemical equilibria.
- He/she is familiar with the problems associated with measurements, uncertainties and errors.

c) Attitude
- He/she is open to learn and accept professional, technological improvement and innovation in his/her profession and convey it genuinely.
- He/she makes a decision in complex and unexpected cases by completely taking into account legal and ethical norms.

d) Autonomy and responsibility
- Even in unexpected decision-making situations he/she is capable of considering complex, fundamental questions from his/her professional field and elaborating them on the basis of the given sources.
- He/she confesses and represents the value system of the qualified chemists and chemical engineers profession with responsibility. He/she is open to critical remarks which are professionally well-founded.

Schedule:

1st week
Introduction to analytical chemistry. Measurements. Basic equations of equilibrium calculations.

2nd week

3rd week
Basic terms related to titrations. Practice of acid-base titrations.
4th week
Basics of complexometry. Complexometric titrations.
5th week
Solubility equilibria. Precipitation titrations, argentometry.
6th week
Redoxi equilibria. Permanganometry.
7th week
8th week
Simple separation techniques I. Gravimetry.
9th week
Simple separation techniques II. Extraction.
10th week
Chromatographic separations and techniques.
11th week
Classification of instrumental analytical methods. Evaluation of analytical chemical results.
12th week
Spectroscopy I. Atomic spectroscopy.
13th week
Spectroscopy II. UV-Vis spectroscopy.
14th week
Potentiometry and conductometry.

Requirements:
- for a signature
Attendance at lectures is recommended, but not compulsory.

- for a grade
The course ends in an examination.
The minimum requirement for the examination is 40 score. Based on the score, the grade for the examination is given according to the following table:

<table>
<thead>
<tr>
<th>Score</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-39</td>
<td>fail (1)</td>
</tr>
<tr>
<td>40-55</td>
<td>pass (2)</td>
</tr>
<tr>
<td>56-70</td>
<td>satisfactory (3)</td>
</tr>
<tr>
<td>71-85</td>
<td>good (4)</td>
</tr>
<tr>
<td>86-100</td>
<td>excellent (5)</td>
</tr>
</tbody>
</table>

If the score of any test is below 40, students can retake the test in conformity with the EDUCATION AND EXAMINATION RULES AND REGULATIONS.

Person responsible for course: Dr. Péter Buglyó, associate professor, PhD

Lecturer: Dr. Péter Buglyó, associate professor, PhD

Title of course: Inorganic and qualitative analytical chemistry laboratory practice
Code: TTKBL0511-EN

ECTS Credit points: 4

Type of teaching, contact hours
- lecture: –
- practice: –
- laboratory: 4 h / week

Evaluation: midterm tests

Workload (estimated), divided into contact hours:
- lecture: –
- practice: –
- laboratory: 52 h
- home assignment: 26 h
- preparation for the exam: 39 h
Total: 117 h

Year, semester: 2nd year, 1st semester

Its prerequisite(s): TTKBE0201_EN, TTKBE0301_EN, TTKBE0401_EN, TTKBL0101_EN

Further courses built on it: TTKBL0512_EN

Topics of course

This practice trains the students in qualitative and quantitative inorganic analytical chemistry laboratory operations. In the first 5 practices some experiments and test tube reactions will be performed with inorganic materials. Until Practice 5 the sequence of the analytical topics follows the classical Fresenius system. In the first part of the practices it is required to obtain experience in the identification and separation of inorganic anions and cations. This work is followed by the analysis of "unknown samples". From Practice 6 the students will perform quantitative analytical measurements using classical titration methods. Acid-base titrations, redox titrations and complexometric titrations will be performed. In each practice the students have to analyse an unknown sample and hand in the results for evaluation.

Literature

Compulsory:
1) Róbert Király and Gábor Lente: Inorganic and Qualitative Analytical Chemistry: Supplementary material for laboratory course
Department of Inorganic and Analytical Chemistry, University of Debrecen, Hungary, 2011.
2) G. Svehla (reviser): Vogel’s Qualitative Inorganic Analysis, 6th ed.
Longman Scientific & Technical Copublished in the United States with John Wiley & Sons, Inc.,
3) N. N. Greenwood and A. Earnshaw: Chemistry of the Elements

Course objective/intended learning outcomes

a) Knowledge
- He/she fundamentally knows the principles and means of qualitative and quantitative analytical chemistry, and the procedures and operating processes of classical qualitative analysis and classical titrations.
- He/she fundamentally knows the principles of solution phase inorganic chemistry.

b) Abilities
- He/she is able to apply the most important terminology, theories, procedures of the given analytical chemistry field when completing the relevant tasks.
- He/she is able to create fundamental models of analytical chemistry processes.

c) Attitude
- He/she is open to learn and accept professional, technological improvement and innovation in his/her profession and convey it genuinely.
- He/she makes a decision in complex and unexpected decision cases by completely taking into account legal and ethical norms.

d) Autonomy and responsibility
- Even in unexpected decision-making situations he/she is capable of considering complex, fundamental questions from his/her professional field and elaborating them on the basis of the given sources.
- He/she confesses and represents the value system of the engineering profession with responsibility. He/she is open to critical remarks which are professionally well-founded.

Schedule:
1st week
Safety training. General laboratory procedures.
2nd week
Anion group I and II. Qualitative analysis of an unknown sample.
3rd week
Anion group I, II, III and IV. Qualitative analysis of an unknown sample.
4th week
Cation group I and III. Qualitative analysis of an unknown sample.
5th week
Cation group I, III, IV and V. Qualitative analysis of an unknown sample.
6th week
Acid-base titrations. Quantitative analysis of a borax sample.
7th week
Acid-base titrations. Quantitative analysis of an oxalic acid sample.
8th week
Titrations with AgNO₃. Quantitative analysis of a KCl + KBr sample.
9th week
Redox titrations with KMnO₄. Quantitative analysis of a H₂O₂ sample.
10th week
Iodometric titrations. Quantitative analysis of a Cu(II) sample.
11th week
Iodometric titrations. Quantitative analysis of a NaI sample.
12th week
Complexometric titrations with EDTA. Quantitative analysis of a Bi(III) sample.
13th week
Complexometric titrations with EDTA. Quantitative analysis of a Zn(II) + Cu(II) sample.

Requirements:
- for a signature
Participation at practice classes is compulsory.
- for a grade
At the beginning of every practice the students are required to write a short test related to the theoretical background and practical questions of the current experiments. For these tests and for the analysis of samples, scores are given. The results of the qualitative analytical tasks are also scored. Based on the average score of the above, the grade is given according to the following table:

<table>
<thead>
<tr>
<th>Score</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-50</td>
<td>fail (1)</td>
</tr>
<tr>
<td>51-60</td>
<td>pass (2)</td>
</tr>
<tr>
<td>61-70</td>
<td>satisfactory (3)</td>
</tr>
<tr>
<td>71-80</td>
<td>good (4)</td>
</tr>
<tr>
<td>81-100</td>
<td>excellent (5)</td>
</tr>
</tbody>
</table>

If the score of the oral exam is below 51%, students can take a retake the exam in conformity with the EDUCATION AND EXAMINATION RULES AND REGULATIONS.

Person responsible for course: József Kalmár, Ph.D., assistant professor

Lecturer: József Kalmár, Ph.D., assistant professor

Title of course: Application of Instrumental Analysis I.
Code: TTKBE0512_EN
ECTS Credit points: 1

Type of teaching, contact hours
- lecture: 1 hours/week

Evaluation: examination

Workload (estimated), divided into contact hours:
- lecture: 14 hours
- practice: -
- laboratory: -
- home assignment: -
- preparation for the exam: 28 hours
Total: 42 hours: 1 credit x 42 hours

Year, semester: 3rd year, 1st semester

Its prerequisite(s): TTKBE0501_EN

Further courses built on it: TTKBL0512_EN

Topics of course
Basic concepts, theoretical and practical aspects, carry-out and use of fundamental laboratory and industrial scale separation processes related to the instrumental analytical chemistry. Set-up, major components and basic operation principles of modern analytical instruments using separation methods in their working methods.

Literature

Compulsory:
1) Separation process principles: chemical and biochemical operations / J. D. Seader, Ernest J.
Course objective/intended learning outcomes

a) Knowledge
- He/she fundamentally knows principles, procedures, properties, reactions and chemical processes required to perform laboratory and industrial separation processes, which are related to and used by the instrumental analytical techniques.

b) Abilities
- He/she is able to apply the most important terminology, theories, procedures of the given separation-related analytical field when completing the relevant tasks.
- He/she is able to create fundamental models of separation processes and perform instrumental analytical investigations.

c) Attitude
- He/she is open to learn and accept professional, technological improvement and innovation in his/her profession and convey it genuinely.
- He/she makes a decision in complex and unexpected cases by completely taking into account legal and ethical norms.

d) Autonomy and responsibility
- Even in unexpected decision-making situations he/she is capable of considering complex, fundamental questions from his/her professional field and elaborating them on the basis of the given sources.
- He/she confesses and represents the value system of the qualified chemists’ or chemical engineers’ profession with responsibility. He/she is open to critical remarks which are professionally well-founded.

Schedule:
1st week

2nd week
Partial freezing, removal of frozen solvent crystals, increase of concentration. Spray drying, freeze drying. Instruments of spray drying, practical use of spray dryin for the production of drugs, and foods. Instruments of freeze drying, laboratory scale to industrial production. Freeze-dried food
production and use.

3rd week

4th week

5th week
Extraction: liquid-liquid liquid-solid and liquid-gas processes. From laboratory scale to industrial liquid-liquid extractors, the role of density, practical uses. Basic rules of extraction, distribution coefficients, selectivities, design of an extraction scheme. Soxhlet extractors, heated and non-heated types. Solid phase extraction (SPE) and solid phase microextraction (SPME), use of SPME in sample preparation. Osmosis, dialysis, reverse osmosis instruments and their use in drinking water production. Membrane dialysis, separation of molecules by size, medical application, hemodialysis.

6th week
General aspects and types of different chromatographic techniques. Grouping of techniques by the dimension of the separating medium. Layer chromatographies: paper chromatography (PC), thin layer chromatography (TLC). Basics of TLC: tools, chambers, separation modes, geometry, types of layers, calculations, visualization and evaluation methods. Computer aided analysis of TLC and HPTLC plates. Two-dimensional TLC.

7th week
Gas chromatography 1: Definition, basics of instruments. Sample preparation for chromatographic analysis: concentration, dissolution, filtration, extraction, head-space sampling, SPME, derivatization, adsorption. General setup, gas supply system, rotating and robot arm sample holders, injectors. The inlet: the key role of rapid sample evaporation.

8th week
Gas chromatography 2: Types of inlets, oven, temperature control, gas chromatography detectors (FID, ECD, MS). Types of analytes that can be measured by the given detectors. Working principles of FID? ECD and MS detectors. Preparative gas chromatography. Web communication within and outside of laboratories. 2D-gas chromatography (2D-GCxGC).

9th week
High pressure liquid chromatography (HPLC) 1. Basic principles, structure, potential fields of applications. Separation mechanisms and separation modes. Most important structural units and components of the HPLC instrument. Solvent supply system, degass station. Role of degassing, different degassing modes. Gradient formation unit. HPLC pumps, working principles, types, role of depulser. Major types of HPLC columns. Stationary phases, normal phase and reversed phase.

10th week
HPLC detectors, their working principles, structure, mode of use. (UV-Vis, scanning UV-Vis, diode array, refractive index, fluorescence, evaporative light scattering, and mass spectrometry detectors). Isocratic and gradient elutions. Characterization of the chromatograms. Preparative HPLC.

11th week
Low pressure chromatography. Traditional, classic column chromatography, dry column chromatography, flash chromatography. Basic operating techniques, limits of separations, hardware requirements, manual mode and instrumentation.

12th week
Affinity chromatography. General principles, hardware requirements, special interaction between the stationary phase and the analytes. Elution of the analytes. Operation in column mode and in the batch mode.

13th week

14th week

Requirements:
- for a signature
 Attendance at lectures is recommended, but not compulsory.
- for a grade
 The course ends in an examination.
 The minimum requirement for the examination is 50 score. Based on the score, the grade for the examination is given according to the following table:

<table>
<thead>
<tr>
<th>Score</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-49</td>
<td>fail (1)</td>
</tr>
<tr>
<td>50-62</td>
<td>pass (2)</td>
</tr>
<tr>
<td>63-75</td>
<td>satisfactory (3)</td>
</tr>
<tr>
<td>76-88</td>
<td>good (4)</td>
</tr>
<tr>
<td>89-100</td>
<td>excellent (5)</td>
</tr>
</tbody>
</table>

If the score of any test is below 60, students can take a retake test in conformity with the EDUCATION AND EXAMINATION RULES AND REGULATIONS.

Person responsible for course: Dr. István Lázár, associate professor, PhD

Lecturer: Dr. István Lázár, associate professor, PhD

Title of course: Instrumental analysis II
Code: TTKBL0512_EN
ECTS Credit points: 3

Type of teaching, contact hours
- lecture: -
- practice: -
- laboratory: 3 hours/week

Evaluation: practice grade
Workload (estimated), divided into contact hours:

- lecture: -
- practice: -
- laboratory: 42 hours
- home assignment: 48 hours
- preparation for the exam: -

Total: 90 hours

Year, semester: 3rd year, 2nd semester

Its prerequisite(s): TTKBE0501, TTKBL0501

Further courses built on it:

Topics of course

The series of laboratory practices are based on the topics of different instrumental analysis like electrophoresis, atomic spectrometry, electroanalysis, validation, spectroscopic methods (atomic spectrometry, UV/vis, HPLC). The instrumental laboratories are connected to the topics of the Instrumental Analysis lecture.

Literature

4. Syllabuses provided by the tutor.

Course objective/intended learning outcomes

a) **Knowledge**

- He/she fundamentally knows principles and means of instrumental analysis, sample pretreatment, data evaluation and validation of the measurements.
- He/she expansively knows the operating principles of the analytical instruments, auxiliary devices.

b) **Abilities**

- He/she is able to apply the most important terminology, theories, procedures of the given instrumental analysis field when completing the relevant tasks.
- He/she is able to find solutions for the analytical problems.

c) **Attitude**

- He/she is open to learn and accept professional, analytical improvement and innovation in his/her profession and convey it genuinely.
- He/she makes a decision in complex and unexpected decision cases by completely taking into account legal and ethical norms.

d) **Autonomy and responsibility**

- Under supervision he/she is responsible in collaboration with other professionals (especially from the field of analytical and environmental economy and safety).
- He/she confesses and represents the value system of the instrumental analytical profession with
responsibility. He/she is open to critical remarks which are professionally well-founded.

Schedule:
1st week: Introductory guidance, accident protection (2h)

2nd week: Evaluation of chromatograms (8h)

3rd week: UV-vis spectroscopy (6h)

4th week: High Performance Liquid Chromatography II (6h)

5th week: Atomic spectroscopy (6h)

6th week: pH-metry (6h)

7th week: Thin layer chromatography (6h)

8th week: Final test (2h)

Requirements:
- for a signature
 Participation at practices is compulsory. A student must attend every practices during the semester. Attendance at practices will be recorded by the practice leader. Being late is equivalent with an absence. In case of further absences, a medical certificate needs to be presented. Missed practice classes should be made up for at a later date, to be discussed with the tutor. Active participation is evaluated by the teacher in every class. If a student’s behavior or conduct doesn’t meet the requirements of active participation, the teacher may evaluate his/her participation as an absence because of the lack of active participation in class.

- for a grade
 Grading is given by the average of 3 separate grades:
 - the average grade of the short tests written at the beginning of the instrumental analysis lab practices (an average of at least 2.0 is necessary to avoid a ‘fail’ final grade)
 - the average grade of evaluation of the analytical data measured by the instrument, the laboratory notebook prepared by the student and final discussion/conclusion made between the student and the supervisor at the end of the lab practice (an average of at least 2.0 is necessary to avoid a ‘fail’ final grade)
 - the grade of the final test

The grade of the final test is calculated according to the following table:

<table>
<thead>
<tr>
<th>Score</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-59</td>
<td>fail (1)</td>
</tr>
<tr>
<td>60-69</td>
<td>pass (2)</td>
</tr>
<tr>
<td>70-79</td>
<td>satisfactory (3)</td>
</tr>
<tr>
<td>80-89</td>
<td>good (4)</td>
</tr>
<tr>
<td>90-100</td>
<td>excellent (5)</td>
</tr>
</tbody>
</table>

Person responsible for course: Dr. Attila Gáspár, professor, DSc

Lecturer: Dr. Attila Gáspár, professor, DSc
Title of course: Physical Chemistry I
Code: TTKBE0401_EN
ECTS Credit points: 3

<table>
<thead>
<tr>
<th>Type of teaching, contact hours</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>- lecture: 2 hours/week</td>
<td></td>
</tr>
<tr>
<td>- practice: -</td>
<td></td>
</tr>
<tr>
<td>- laboratory: -</td>
<td></td>
</tr>
</tbody>
</table>

| Evaluation: exam | |

<table>
<thead>
<tr>
<th>Workload (estimated), divided into contact hours:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>- lecture: 28 hours</td>
<td></td>
</tr>
<tr>
<td>- practice: -</td>
<td></td>
</tr>
<tr>
<td>- laboratory: -</td>
<td></td>
</tr>
<tr>
<td>- home assignment: -</td>
<td></td>
</tr>
<tr>
<td>- preparation for the exam: 60 hours</td>
<td></td>
</tr>
<tr>
<td>Total: 88 hours</td>
<td></td>
</tr>
</tbody>
</table>

| Year, semester: | 1\(^{st}\) year, 2\(^{nd}\) semester |

| Its prerequisite(s): | TTKBE0101_EN, TTFBE2111_EN, TTMBE0808_EN |

| Further courses built on it: | TTKBE0402_EN, TTKBE0202_EN, MFVGE31V03_EN, TTKBG0402_EN, TTKBE0302_EN, TTKBE0501_EN, TTKBE1111_EN, TTKBL1111_EN, TTKBE0204_EN, TTKBG0614_EN, TTKBG0312_EN, TTKBL0311_EN, TTKBL0511_EN |

<table>
<thead>
<tr>
<th>Topics of course</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>The series of lectures are based on the topics of chemical thermodynamics and equilibrium studies. It reviews the fundamental relations of physical chemistry. The course help to build and strengthen the concepts of physical chemistry in the students’ scientific view. In this way the basic concepts and phenomena learned, especially in the General Chemistry course (prerequisite) will be placed into more exact and mathematically well-established surrounding. Application of the approach of physical chemistry in chemical engineering is discussed through examples. The main chapters include: Description of gases. Laws of thermodynamics. Thermochemistry. Description of one component and multicomponent systems. Equilibrium.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Literature</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Compulsory:</td>
<td></td>
</tr>
<tr>
<td>- Lecture notes and teaching material available via the e-learning system.</td>
<td></td>
</tr>
<tr>
<td>Recommended:</td>
<td></td>
</tr>
</tbody>
</table>
Course objective/intended learning outcomes

a) Knowledge
- He/She has a basic physical chemistry knowledge on describing simple chemical processes as well as on recognizing, organizing these in practice.
- He/She has a knowledge to solve problems on the field of physical chemistry, using natural sources, and understanding the chemical background of living and non living systems.
- He/She can understand and communicate professionally on subjects of physical chemistry in English.

b) Abilities
- He/She is able to use the previously obtained knowledge on the field of physical chemistry studies to solve practical problems
- He/she is able to create fundamental models of engineering systems and processes.

c) Attitude
- He/She is ready to discuss problems on the field of chemistry and other science with professionals.
- He/She is able to represent his/her own personal scientific ideology toward professional and unprofessional groups.

d) Autonomy and responsibility
- He/She stands for his/her opinion or ideology in professional discussions

Schedule:

1st week
Ideal and real gases

2nd week
The 1st law of thermodynamics

3rd week
Thermochemistry

4th week
2nd law of thermodynamics
Concepts: Description and formulation of the 2nd law. Definition of entropy in thermodynamics and statistical definition. The entropy change of the system and the surrounding during reversible

5th week 3rd law of thermodynamics

6th week Potential functions in thermodynamics

7th week Chemical potential

8th week Thermodynamics of one component systems

9th week Thermodynamics of two component mixtures and dilute solutions

10th week Mixture of volatile components

11th week Phase rule

12th week Thermodynamic equilibrium in reactive systems.

13th week Effect of parameters on chemical equilibrium

14th week Chemical equilibrium in various systems.

Requirements:
- for a signature
Attendance at lectures is recommended, but not compulsory. During the semester there is a written end-term test in the 14th week. Students have to sit for the tests. The material of the test is the same as the exam. All questions cover several parts of the topics of the lectures and the sub-questions are scored according to the given points.
- for a grade
The course ends in a written or oral examination. Based on the result of the examination questions scored according to pre-set maximum points for each sub-questions. The type of the examination (written or oral) is the choice of the student.
The minimum requirement for the examination is 60%. Based on the score of the tests separately, the grade for the tests and/or the examination is given according to the following table:

<table>
<thead>
<tr>
<th>Score</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-59</td>
<td>fail (1)</td>
</tr>
<tr>
<td>60-69</td>
<td>pass (2)</td>
</tr>
<tr>
<td>70-79</td>
<td>satisfactory (3)</td>
</tr>
<tr>
<td>80-89</td>
<td>good (4)</td>
</tr>
<tr>
<td>90-100</td>
<td>excellent (5)</td>
</tr>
</tbody>
</table>

If the score of any test is below 60, students can take a retake test in conformity with the EDUCATION AND EXAMINATION RULES AND REGULATIONS.

- an offered grade:
It may be offered for students on the basis of the result of the end-term test if the grade is at least satisfactory (3).

Person responsible for course: Dr. Attila Bényei, associate professor, PhD
Lecturer: Dr. Attila Bényei, associate professor, PhD

Title of course: Physical Chemistry I. Code: TTKBG0401_EN
ECTS Credit points: 2

Type of teaching, contact hours
- lecture: -
- practice: 2 hours/week
- laboratory: -

Evaluation: practice

Workload (estimated), divided into contact hours:
- lecture: - hours
- practice: 28 hours
- laboratory: -
- home assignment: 30 hours
- preparation for the exam: -
Total: 58 hours

Year, semester: 1st year, 2nd semester

Its prerequisite(s): TTKBE0101_EN, TTFBE2111_EN, TTMBE0808_EN, parallel registration to TTKBE0401_EN

Further courses built on it: -

Topics of course

The problem solving classes are based on the topics of the lectures in the field of chemical thermodynamics and equilibrium studies. Calculations are made for better understanding the fundamental relations of physical chemistry. The course help to build and strengthen the concepts of physical chemistry in the students’ scientific view. In this way the basic concepts and phenomena learned, especially in the General Chemistry course (prerequisite) will be placed into more exact and mathematically well-established surrounding. Application of the approach of physical chemistry in chemical engineering is discussed through examples. The main chapters include: Description of gases. Laws of thermodynamics. Thermochemistry. Description of one component and multicomponent systems. Equilibrium.

Literature

Compulsory:
- List of problems, their solutions and other teaching material available via the e-learning system.

Recommended:
- Other corresponding books from bookboon.com

Course objective/intended learning outcomes

a) Knowledge
- He/She has a basic physical chemistry knowledge on describing simple chemical processes as well as on recognizing, organizing these in practice.
- He/She has a knowledge to solve problems on the field of physical chemistry, using natural sources, and understanding the chemical background of living and non living systems.
- He/She can understand and communicate professionally on subjects of physical chemistry in English.

b) Abilities
- He/She is able to use the previously obtained knowledge on the field of physical chemistry
studies to solve practical problems
- He/she is able to create fundamental models of engineering systems and processes.

c) Attitude
- He/She is ready to discuss problems on the field of chemistry and other science with professionals.
- He/She is able to represent his/her own personal scientific ideology toward professional and unprofessional groups.

d) Autonomy and responsibility
- He/She stands for his/her opinion or ideology in professional discussions

Schedule:

1st week
Ideal and real gases
Problem solving and calculations in the following topics: Ideal gas and the state equation. Isotherm, isobar and isochor changes. Pressure of gases and its statistical interpretation. Mixture of ideal gases, molar fraction and partial pressure Dalton’s law. Real gases, isotherms. Compressibility factor. Real gases and van der Waals equation. Molecular explanation of the pressure and volume correction. The virial equation. List of mathematical tools used during the course. Phenomenological and statistical approach. SI system and units. Dimension analysis. The 0th law of thermodynamics

2nd week
The 1st law of thermodynamics

3rd week
Thermochemistry

4th week
2nd law of thermodynamics

5th week
3rd law of thermodynamics

6th week
Potential functions in thermodynamics
Problem solving and calculations in the following topics: Unification of the 1st and 2nd laws. Maximum useful work and its molecular explanation Free energy (Helmholtz) and free enthalpy (Gibbs) Potential function and their properties. Direction of spontaneous processes. Equilibrium in closed and open systems. Equilibrium and steady state.
7th week Chemical potential
Problem solving and calculations in the following topics: Chemical potential and its calculation
one component and multicomponent systems. Gibbs–Duhem equation. Chemical potential in two
component gas and liquid mixtures, ideal and real solutions Raoult’s law and Henry’s law.
Fugacity and activity and its thermodynamic importance. Choice of standard state. The
fundamental equation.

8th week Thermodynamics of one component systems
Problem solving and calculations in the following topics: Phase and component. Types of phase
transitions. Application of chemical potential in the description of equilibrium of multiple phase
one component systems. Phase stability and phase transition. Clapeyron and Clausius–Clapeyron
equation. Liquid-vapour systems, evaporation, boiling, enthalpy of evaporation, boiling point,
saturated vapour pressure, entropy of evaporation. Trouton’s law and phase diagram. Phase
diagram of CO₂ and water.

9th week Thermodynamics of two component mixtures and dilute solutions
Problem solving and calculations in the following topics: Ideal and real mixtures. Partial molar
quantities. Partial molar volume and its determination. Thermodynamics of mixing. Excess
functions of mixing, enthalpy and entropy of mixing. Colligative properties: melting point
depression, boiling point elevation and osmosis. Practical importance and applications of
colligative properties.

10th week Mixture of volatile components
Problem solving and calculations in the following topics: Vapour pressure of liquid mixtures.
Vapour pressure and composition, boiling point-composition equilibrium plots for ideal and real
mixtures. Distillation, azeotropic mixtures. Distribution equilibrium, Vapour pressure of non-
miscible liquids. Steam distillation.

11th week Phase rule
Problem solving and calculations in the following topics: component, phase, degree of freedom.
Phase rule. Phase diagram of partially miscible liquids. Eutectics, phase diagram of two
component solids. Cooling of two component mixtures. Three component systems and their
presentation in triangle diagram.

12th week Thermodynamic equilibrium in reactive systems.
Problem solving and calculations in the following topics: Chemical equilibrium. Reaction free
energy. Exergonic and endergonic processes. Equilibrium constant. Standard reaction enthalpy
and its relation to equilibrium constant and chemical potentials. Determination of equilibrium
constant from thermodynamic data. Types of equilibrium constant: K_p, K_c, K_a. Reaction quotient
and equilibrium constant.

13th week Effect of parameters on chemical equilibrium
Problem solving and calculations in the following topics: Dynamic nature of equilibrium, La-
Chatelier principle. Effect of pressure and temperature on the equilibrium constant, van’t Hoff
equation. Effect of addition of reactants and products. Practical applications.

14th week Chemical equilibrium in various systems.
Problem solving and calculations in the following topics: Types of equilibria: one step, multiple
step, parallel, consecutive equilibrium. Equilibrium in homogeneous systems: acid-base, redox
and stepwise equilibrium. Dissociation in solution and gas phase, equilibrium of reaction
systems. Thermodynamics of ATP. Heterogeneous equilibrium, solubility product,
decomposition of solids, adsorption of gases on solids. Buffers. pH scale and calculation of pH.
Haber process.

Requirements:
Participation at **practice classes** is compulsory. A student must attend the practice classes and may not miss more than three times during the semester. In case a student does so, the subject will not be signed and the student must repeat the course. A student can’t make up any practice with another group. Attendance at practice classes will be recorded by the practice leader. Being late is equivalent with an absence. In case of further absences, a medical certificate needs to be presented. Missed practice classes should be made up for at a later date, to be discussed with the tutor. Students are required to bring calculators or computers pencil and ruler to each practice class. Active participation is evaluated by the teacher in every class. If a student’s behaviour or conduct doesn’t meet the requirements of active participation, the teacher may evaluate his/her participation as an absence because of the lack of active participation in class.

During the semester there are two tests: the mid-term test in the 8th week and the end-term test in the 15th week. Students have to sit for the tests. The problems to be solved and calculated are highly analogous with the ones made available in e-learning system. Scoring system is also provided, i.e. possible maximum points for the given problem.

- for a grade

The course ends with signature and mark. The mark is based on the result of the two tests scored according to pre-set maximum points for each sub-problems.

The minimum requirement for the mark is 60%, based on the score of the tests separately, the grade for the tests is given according to the following table:

<table>
<thead>
<tr>
<th>Score</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-59</td>
<td>fail (1)</td>
</tr>
<tr>
<td>60-69</td>
<td>pass (2)</td>
</tr>
<tr>
<td>70-79</td>
<td>satisfactory (3)</td>
</tr>
<tr>
<td>80-89</td>
<td>good (4)</td>
</tr>
<tr>
<td>90-100</td>
<td>excellent (5)</td>
</tr>
</tbody>
</table>

If the score of any test is below 60, students can take a retake test in conformity with the EDUCATION AND EXAMINATION RULES AND REGULATIONS.

Person responsible for course: Dr. Attila Bényei, associate professor, PhD

Lecturer: Dr. Attila Bényei, associate professor, PhD

Title of course: Physical Chemistry II.
Code: TTKBE0402_EN
ECTS Credit points: 3

Type of teaching, contact hours
- lecture: 2 hours/week
- practice: -
- laboratory: -

Evaluation: exam

Workload (estimated), divided into contact hours
- lecture: 28 hours
- practice: -
- laboratory: -
- home assignment: -
- preparation for the exam: 60 hours
Total: 88 hours

Year, semester: 2nd year, 1st semester

Its prerequisite(s): TTKBE0401_EN, TTKBE0201_EN, TTKBE0301_EN

Further courses built on it: TTKBE0403_EN, TTKBL0411_EN, TTKBE0405_EN

Topics of course

The series of lectures are based on the topics of electrochemistry and reaction kinetics. It reviews the fundamental relations of physical chemistry. The course helps to build and strengthen the concepts of physical chemistry in the students’ scientific view. Application of the approach of physical chemistry in chemical engineering is discussed through examples. The main chapters include: Homogeneous and heterogeneous equilibrium electrochemistry. Transport processes. Kinetics of homogeneous and heterogeneous reactions.

Literature

Compulsory:
- R.M. Pashley, M. E. Karaman: Applied Colloid and Surface Chemistry. ISBN 13 978-0-470-86882-9(HB) Teaching material is available via the e-learning system

Recommended:

Course objective/intended learning outcomes

a) Knowledge
- He/She has a mathematical and scientific background to understand processes in chemical and chemistry related industries.

b) Abilities
- He/She capable to apply the learned methods, models and planning’s of chemical technology and chemical processes through calculations.

c) Attitude
- He/She makes effort to improve and apply the practical methods with new results and experiences.
- He/She can collaborate with other people and discuss their opinions in problem solving processes before making new decisions.

d) Autonomy and responsibility
- He/She tends to establish new solutions and technologies
<table>
<thead>
<tr>
<th>Week</th>
<th>Schedule</th>
</tr>
</thead>
</table>
Collision theory, its basic assumptions. Interpretation and calculation of pre-exponential factor.
Steric factor, the anchoring mechanisms, Diffusion driven and activation energy driven reactions.

11th week
The activated complex theory of chemical reactions

12th week
Processes on solid surfaces

13th week
Physical chemistry of colloid

14th week
Application of colloids, nanoparticles

Requirements:
- for a signature
Attendance at lectures is highly recommended, but not compulsory.
During the semester there is a written end-term test in the 14th week. Students have to sit for the tests. The material of the test is the same as the exam. All questions cover several parts of the topics of the lectures and the sub-questions are scored according to the given points.
- for a grade
The course ends in a written or oral examination. Based on the result of the examination questions scored according to pre-set maximum points for each sub-questions. The type of the examination (written or oral) is the choice of the student.
The minimum requirement for the examination is 60%. Based on the score of the tests separately, the grade for the tests and/or the examination is given according to the following table:

<table>
<thead>
<tr>
<th>Score</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-59</td>
<td>fail (1)</td>
</tr>
<tr>
<td>60-69</td>
<td>pass (2)</td>
</tr>
<tr>
<td>70-79</td>
<td>satisfactory (3)</td>
</tr>
<tr>
<td>80-89</td>
<td>good (4)</td>
</tr>
<tr>
<td>90-100</td>
<td>excellent (5)</td>
</tr>
</tbody>
</table>

If the score of any test is below 60, students can take a retake test in conformity with the EDUCATION AND EXAMINATION RULES AND REGULATIONS.
-an offered grade:
It may be offered for students on the basis of the result of the end-term test if the grade is at least satisfactory (3).
Title of course: Physical Chemistry II.
Code: TTKBG0402_EN

ECTS Credit points: 2

Type of teaching, contact hours
- lecture: -
- practice: 2 hours/week
- laboratory: -

Evaluation: practice

Workload (estimated), divided into contact hours:
- lecture: -
- practice: 28 hours
- laboratory: -
- home assignment: 30 hours
- preparation for the exam: -
Total: 58 hours

Year, semester: 2nd year, 1st semester

Its prerequisite(s): TTKBE0401_EN, TTKBE0201_EN, TTKBE0301_EN, parallel registration to TTKBE0402_EN

Further courses built on it: -

Topics of course

The problem solving classes are based on the topics of the lectures in the field of electrochemistry, reaction kinetics, and colloid chemistry. Calculations are made for better understanding the fundamental relations of physical chemistry. The course help to build and strengthen the concepts of physical chemistry in the students’ scientific view. In this way the basic concepts and phenomena learned, especially in the General Chemistry course (prerequisite) will be placed into more exact and mathematically well-established surrounding. Application of the approach of physical chemistry in chemical engineering and industry is discussed through examples. The main chapters include: Homogeneous and heterogeneous equilibrium electrochemistry. Transport processes. Kinetics of homogeneous and heterogeneous reactions. Physical chemistry of colloids.

Literature

Compulsory:

Recommended:

Course objective/intended learning outcomes

a) Knowledge
- He/She has a mathematical and scientific background to understand processes in chemical and chemistry related industries.

b) Abilities
- He/She capable to apply the learned methods, models and planning’s of chemical technology and chemical processes through calculations.

c) Attitude
- He/She makes effort to improve and apply the practical methods with new results and experiences.
- He/She can collaborate with other people and discuss their opinions in problem solving processes before making new decisions.

d) Autonomy and responsibility
- He/She tends to establish new solutions and technologies.

Schedule:
1st week Homogeneous equilibrium electrochemistry. Thermodynamics of electrolyte solutions

2nd week Heterogeneous equilibrium electrochemistry. Thermodynamics of electrodes.

3rd week Thermodynamics of galvanic cells
Problem solving and calculations in the following topics: Electrodes and galvanic cells. Diffusion potential and its elimination. Types of batteries. Chemistry of various batteries. Thermodynamics of batteries. The connection between electromotive force and reaction free enthalpy. Thermodynamic parameters from electrochemistry measurement.

4th week Transport processes
5th week
Movement of ions in electrolyte solutions. Conductance of electrolytes

6th week
Reaction kinetics. Rate of chemical reactions. Rate law of chemical reactions
Problem solving and calculations in the following topics: Definition of reaction rate. Experimental methods to determine reaction rates. Fast reaction kinetics. Flow, relaxation and other techniques. Types of reactors. Rate equation, rate coefficient and order of reaction. Experimental methods to determine rate equation. Methods to evaluate experimental results.

7th week
Kinetics of simple reactions

8th week
Complex reaction systems
Problem solving and calculations in the following topics: Elementary reactions and molecularity. Simplification of reaction rate determination, flooding or isolation. Steady state and pre-equilibrium. Unimolecular reactions and their Lindemann–Hinshelwood mechanism. Enzyme reactions, Michaelis–Menten mechanism.

9th week
Reaction encounters

10th week
Collision theory of chemical reactions
Problem solving and calculations in the following topics: Temperature dependence of rate coefficient, Arrhenius equation. Activation energy. Collision theory, its basic assumptions. Interpretation and calculation of pre-exponential factor.

11th week
The activated complex theory of chemical reactions

12th week
Processes on solid surfaces

13th week
Physical chemistry of colloid
Problem solving and calculations in the following topics: Introduction to the nature of colloidal systems, types of colloidal systems. The concept of surface tension. Wetting and spreading. Curved
surfaces. Electric double layer, electrokinetic potential. The colloid stability.

**14th week ** Application of colloids, nanoparticles

Problem solving and calculations in the following topics: Coherent incoherent systems. The basics of rheology. Liophobic colloids: aerosols, liosols, xerosols. Applications of colloids: nanoparticles, emulsions, suspensions, foams.

Liophilic colloids: association and macromolecular systems. The theory of surfactants and cleaning

Requirements:

Participation at **practice classes** is compulsory. A student must attend the practice classes and may not miss more than three times during the semester. In case a student does so, the subject will not be signed and the student must repeat the course. A student can’t make up any practice with another group. Attendance at practice classes will be recorded by the practice leader. Being late is equivalent with an absence. In case of further absences, a medical certificate needs to be presented. Missed practice classes should be made up for at a later date, to be discussed with the tutor.

Students are required to bring calculators or computers pencil and ruler to each practice class. Active participation is evaluated by the teacher in every class. If a student’s behaviour or conduct doesn’t meet the requirements of active participation, the teacher may evaluate his/her participation as an absence because of the lack of active participation in class.

During the semester there are two tests: the mid-term test in the 8th week and the end-term test in the 15th week. Students have to sit for the tests. The problems to be solved and calculated are highly analogous with the ones made available in e-learning system. Scoring system is also provided, i.e. possible maximum points for the given problem.

- for a grade

The course ends with signature and mark. The mark is based on the result of the two tests scored according to pre-set maximum points for each sub-problems.

The minimum requirement for the mark is 60%, based on the score of the tests separately, the grade for the tests is given according to the following table:

<table>
<thead>
<tr>
<th>Score</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-59</td>
<td>fail (1)</td>
</tr>
<tr>
<td>60-69</td>
<td>pass (2)</td>
</tr>
<tr>
<td>70-79</td>
<td>satisfactory (3)</td>
</tr>
<tr>
<td>80-89</td>
<td>good (4)</td>
</tr>
<tr>
<td>90-100</td>
<td>excellent (5)</td>
</tr>
</tbody>
</table>

If the score of any test is below 60, students can take a retake test in conformity with the EDUCATION AND EXAMINATION RULES AND REGULATIONS.

Person responsible for course: Dr. Attila Bényei, associate professor, PhD

Lecturer: Dr. Attila Bényei, associate professor, PhD

Title of course: Physical Chemistry II. (lab.)
Code: TTKBL0411_EN
ECTS Credit points: 2

Type of teaching, contact hours
- lecture: -
Evaluation: practice

Workload (estimated), divided into contact hours:
- lecture: -
- practice: -
- laboratory: 28 hours
- home assignment: 32 hours
- preparation for the exam: -
Total: 60 hours

Year, semester: 2nd year, 2nd semester

Its prerequisite(s): TTKBL0101_EN, TTKBE0402_EN

Further courses built on it: -

Topics of course

The aim of this course is to help students to get a deeper understanding of the complex physico-chemical theories by performing experiments with basic techniques. To teach them how to use laboratory equipments, how to carry out experiments and how to interpret experimental results. The tasks of this course are mainly based on kinetics, thermodynamics, phase equilibria, electrochemistry.

Set of measurements:
101. Measuring densities by pycnometer, composition of a binary mixture
102. Measuring the heat capacities of metals by calorimetry
103. Measuring electrical conductivity of solutions
104. Measuring the concentration of a coloured solute by spectrophotometry
105. Determination of NaHCO₃ content of a solid sample by gas volumetry
106. pH-metric titration curves of hydrochloric and acetic acids
107. Study of Cooling Curve
108. Study of electrolysis
109. Mutarotation of glucose measured by polarimetry
110. Measuring electromotive force of a galvanic cell
111. Refractometry and viscosimetry
112. Determination of enthalpy of dissolution
113. Investigation of redox electrodes
114. Conductometry
115. Reaction rate of decomposition of H₂O₂ measured by gas volumetry
116. Investigation of buffers
117. Electrochemical investigation of corrosion
118. Distillation of an alcohol-water mixture
201. Determination of heat of combustion by using a bomb calorimeter
202. Thermodynamic quantities by measuring the temperature dependent EMF
203. Determination of partial molar volumes by measuring densities
204. Determination of the enthalpy and entropy of vaporization of liquids
205. Redox potentials from potentiometric titrations
206. Investigation of Kohlrausch’s law
207. Determination of activity coefficient for concentration galvanic cell
208. Determination of diffusion coefficient by layered (“schlieren”) method
209. Study of the photochemical degradation of tris(oxalato)iron(III) complex
210. Determination of protonation constants of an indicator
211. Study of the iodine-iodide equilibrium
212. Dissociation constant of weak acids measured by conductometry
213. Dissociation equilibria of ampholites, determination of isoelectric pH
214. Study of stepwise complex formation
215. Decomposition kinetics of Kalmopyrin
216. Acid catalysed hydrolysis of saccharose
217. Kinetics of a second order reaction: hydrolysis of esters
218. Determination of activation energy
219. Initial rates and activation energy of the iodine clock

Literature

- Laboratory notes and additional teaching materials available via the e-learning system.

Course objective/intended learning outcomes

a) Knowledge
- He/She knows the chemical methods for measurements or analysis, their principles and instrumental background, and their applicability.
- He/She has a mathematical and scientific background to understand processes in chemical and chemistry related industries.

b) Abilities
- He/She capable to apply the learned methods, models and plannings of chemical technology and chemical processes through calculations.
- He/She is able to use documentation (both online and printed) related to the current field, including the scientific literature both on his/her native language and in English.
- He/She is able to run measurements both on laboratory and scaled up systems, and evaluate the obtained data at all steps in the development.

c) Attitude
- He/She is open to accept environmentally efficient technologies, and for the application of new, innovative and advanced methods in economy.
- In each technological or laboratory steps he/she is always concerned to the current rules/laws of health prevention, safety and environmental questions.

d) Autonomy and responsibility
- Following directions he/she can work without supervision considering all quality and safety rules.

Schedule: One of the measurements listed above (Topics of course) per week except the 1st practice (introduction, general information and safety training).
Requirements:

Participation on the laboratory practice is compulsory. The measurements and knowledge of the associated theory are marked and an overall mark will be given. Safety training (1st week) is mandatory before the first lab practice (2nd week). Everybody should work individually according to the pre-set schedule (which will be provided on the 1st week). Lab practices are 4 hours long every week (from the 2nd until the 7th week). Being late or failed mark on the written test from the appropriate measurement is equivalent with an absence. In accordance with the regulations of University of Debrecen, attendance is compulsory with the exception of health or family problems (the reason of absence should be certified). In this case, the students should agree with the teacher on replacement dates for the missed experiments.

Requirements for the grade:
The measurements (regularly) and written tests (occasionally) according to the knowledge of the associated theory are marked and the overall mark will be given based on these.
- All of the notebooks of the measurements have to be marked as “pass (2)” or better for the successful completion.
- The minimum requirement for the written tests is 60%. Based on the score of the tests separately, the grade for the tests is given according to the following table:

<table>
<thead>
<tr>
<th>Score</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-59</td>
<td>fail (1)</td>
</tr>
<tr>
<td>60-69</td>
<td>pass (2)</td>
</tr>
<tr>
<td>70-79</td>
<td>satisfactory (3)</td>
</tr>
<tr>
<td>80-89</td>
<td>good (4)</td>
</tr>
<tr>
<td>90-100</td>
<td>excellent (5)</td>
</tr>
</tbody>
</table>

If the average of written tests is below 60% the best grade for the course can only “pass (2)” in any other cases the final mark is given with weighted average by means of the mark of the written tests and notebooks in 1 to 2 ratio.

Person responsible for course: Dr. Ferenc K. Kálmán, assistant professor, PhD

Lecturer: Dr. Ferenc K. Kálmán, assistant professor, PhD

Title of course: Physical chemistry III.
Code: TTKBE0403_EN
ECTS Credit points: 3

Type of teaching, contact hours
- lecture: 2 hours/week
- practice: -
- laboratory: -

Evaluation: exam

Workload (estimated), divided into contact hours:
- lecture: 28 hours
- practice: -
- laboratory: -
- home assignment: 22 hours
- preparation for the exam: 40 hours
Total: 90 hours

Year, semester: 2nd year, 2nd semester

Its prerequisite(s): TTKBE0402_EN

Further courses built on it: TTKBE0504_EN, TTKBE0415_EN, TTKBE0617_EN

<table>
<thead>
<tr>
<th>Topics of course</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Basic properties of interfaces.</td>
</tr>
<tr>
<td>- Adsorption.</td>
</tr>
<tr>
<td>- Electric double layer.</td>
</tr>
<tr>
<td>- Kinetics of heterogeneous reactions.</td>
</tr>
<tr>
<td>- Heterogeneous catalysis.</td>
</tr>
<tr>
<td>- Dynamic electrochemistry.</td>
</tr>
<tr>
<td>- Practical applications of electrochemistry.</td>
</tr>
<tr>
<td>- Definition, discovery, application of radioactivity.</td>
</tr>
<tr>
<td>- Parts, structure of atomic nucleus, stable and radioactive nuclei.</td>
</tr>
<tr>
<td>- Kinetics of radioactive decay.</td>
</tr>
<tr>
<td>- Mechanism and type of radioactive decay.</td>
</tr>
<tr>
<td>- Interaction of radiation with matter.</td>
</tr>
<tr>
<td>- Nuclear reactions, nuclear energy production.</td>
</tr>
<tr>
<td>- Chemical and biological effects of radiation.</td>
</tr>
<tr>
<td>- Detection and measurement of radiation.</td>
</tr>
<tr>
<td>- Environmental radioactivity.</td>
</tr>
</tbody>
</table>

Literature

Compulsory:

Course objective/intended learning outcomes

a) Knowledge
- He/She has a basic chemical knowledge on interfaces and radioactivity, formation and properties of interfaces, methods for studying interfaces, adsorption processes of gases and liquids, formation and properties of electric double layer, kinetics of interfacial processes, mechanism of heterogeneous catalysis, formulas describing electrode processes under dynamic conditions, kinetics and types of radioactive decay, interactions of radiation with matter, basic process of nuclear energy production, abundance of radioactive isotopes in the environment, effect of radioactivity on biological systems, detection and measurement of radiation.

b) Abilities
- He/She is able to use the obtained chemical knowledge on the field of interfaces, adsorption, electrode reactions, heterogeneous catalysis, atomic nuclei, radioactivity, and interaction of radiation with matter, to solve the actual basic problems and prove the obtained solution.
- He/She is able to argue on scientific problems by his/her knowledge.
c) Attitude
- He/She is open toward scientific and other postgradual education.

d) Autonomy and responsibility
- He/She can make reasonable evaluations about his/her own work comparing to others to the same field.
- He/She can evaluate his/her co-workers work’s responsibly in both laboratory and industrial environment, and report it to his/her chief.

Schedule:

<table>
<thead>
<tr>
<th>Week</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>1<sup>st</sup> week</td>
<td>Formation and properties of interfaces, methods for studying interfaces. Interfacial microscopic and macroscopic properties, surface analytical methods</td>
</tr>
<tr>
<td>2<sup>nd</sup> week</td>
<td>Interfacial thermodynamics: adsorption of gases on solid surface, adsorption isotherms, determination of surface area. Decrease of surface energy by adsorption, quantitative description of the process</td>
</tr>
<tr>
<td>3<sup>rd</sup> week</td>
<td>Solid/liquid interfaces, electric double layer. Surface excess concentration on solid/liquid interfaces, the role of interfacial electric properties</td>
</tr>
<tr>
<td>4<sup>th</sup> week</td>
<td>Kinetics of interfacial reactions. Heterogeneous catalysis. Steps of heterogeneous reactions, rate-determining step. Applications of heterogeneous catalysis</td>
</tr>
<tr>
<td>5<sup>th</sup> week</td>
<td>Dynamic electrochemistry. Rate of charge transport, activation free energy, relations of current and voltage (Erdey-Grúz and Volmer theory), exchange current, overpotential, polarization. Definitions and relations on electrode reactions.</td>
</tr>
<tr>
<td>6<sup>th</sup> week</td>
<td>Effects determining the rate of charge transfer, the influence of transport on kinetics of electrode reaction: diffusion, migration, and convection. Diffusion current, diffusion limit. Effects determining the electron transfer, selection of potential determining process</td>
</tr>
<tr>
<td>7<sup>th</sup> week</td>
<td>Electrochemistry in practice, electrolysis, voltage sources, industrial electrochemical processes, corrosion and passivity. Application of electrochemistry</td>
</tr>
<tr>
<td>8<sup>th</sup> week</td>
<td>Discovery of radioactivity, consequences. Properties and constituents of nucleus. Stable and radioactive nuclei. Isobar nuclei. Cause and result of radioactive decay. Radioactivity is a natural process. Scientific and practical consequences of the discovery of radioactivity. Stability/radioactivity of atomic nuclei, decay type are determined by the ratio of protons to neutrons.</td>
</tr>
</tbody>
</table>

11th week
Interaction of beta radiation with matter: ionization, Brehmsstrahlung, Cherenkov radiation, annihilation (positron emission tomography), back-scattering, absorption, self-absorption. Interaction of gamma and X-ray radiation with matter: Compton scattering, photoelectric effect, pair formation. General aspects of the interaction of beta radiation and high energy electromagnetic radiation, respectively, with matter.

12th week

13th week

14th week

Requirements:

- for a signature
 Attendance at lectures is recommended, but not compulsory.

- for a grade
 The course ends in an examination. Based on the examination, the exam grade is given according to the following table:
 - Score Grade
 - 0-59 fail (1)
 - 60-69 pass (2)
 - 70-79 satisfactory (3)
 - 80-89 good (4)
 - 90-100 excellent (5)

 If the score of the examination is below 60, students can take a retake test in conformity with the EDUCATION AND EXAMINATION RULES AND REGULATIONS.

 - an offered grade:
 it may be offered for students if they write a test on the 14th week and the score of it is at least 60%.
 The offered grade is calculated as the exam grade (see above).

Person responsible for course: Dr. Noémi Nagy, professor, DSc

Lecturer: Dr. Noémi Nagy, professor, DSc
 Dr. István Bányai, professor, DSc

Title of course: Macromolecular Chemistry ECTS Credit points: 3
Code: TTKBE0611_EN

<table>
<thead>
<tr>
<th>Type of teaching, contact hours</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>- lecture: 2 hours/week</td>
<td></td>
</tr>
<tr>
<td>- practice: -</td>
<td></td>
</tr>
<tr>
<td>- laboratory: -</td>
<td></td>
</tr>
</tbody>
</table>

Evaluation: exam

Workload (estimated), divided into contact hours:

- lecture: 28 hours	
- practice: -	
- laboratory: -	
- home assignment: 12 hours	
- preparation for the exam: 50 hours	

Total: 90 hours

Year, semester: 3\(^{rd}\) year, 2\(^{nd}\) semester

Its prerequisite(s): TTKBE0302_EN

Further courses built on it: TTKBE1213_EN

Topics of course

Literature

Compulsory:

Recommended:

Course objective/intended learning outcomes

a) Knowledge
- He/She knows the properties of the most important chemicals, their productions and applications.
- He/She has a mathematical and scientific background to understand processes in chemical and chemistry related industries.

b) Abilities
- He/She capable to apply the learned methods, models and plannings of chemical technology and chemical processes through calculations.
- He/She understands and able to describe the elements of industrial and technological units, their operations including the connectivity options.

c) **Attitude**
- He/She is open to accept environmentally efficient technologies, and for the application of new, innovative and advanced methods in economy.
- He/She makes effort to improve and apply the practical methods with new results and experiences.

d) **Autonomy and responsibility**
- Following directions he/she can work without supervision considering all quality and safety rules.
- He/She shares experiences with others to help them.

Schedule:

<table>
<thead>
<tr>
<th>Week</th>
<th>Topics</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>Principal definitions. Classification of polymers.</td>
</tr>
<tr>
<td>2nd</td>
<td>Chemical structure, shape and fine structure of polymers.</td>
</tr>
<tr>
<td>3rd</td>
<td>Polymolecularity. Average molecular weights, molecular weight distribution.</td>
</tr>
<tr>
<td>4th</td>
<td>Determination methods for the molecular weight of polymers.</td>
</tr>
<tr>
<td>5th</td>
<td>Physical states of polymers, I.: glass transition temperature, description of amorphous polymers.</td>
</tr>
<tr>
<td>6th</td>
<td>Physical states of polymers, II.: crystallinity of polymers.</td>
</tr>
<tr>
<td>7th</td>
<td>Synthesis of polymers: Radical polymerization I.</td>
</tr>
<tr>
<td>8th</td>
<td>Synthesis of polymers: Radical polymerization II.</td>
</tr>
<tr>
<td>9th</td>
<td>Synthesis of polymers: Types of copolymers, radical copolymerization.</td>
</tr>
<tr>
<td>10th</td>
<td>Synthesis of polymers: Cationic, living cationic polymerization.</td>
</tr>
<tr>
<td>12th</td>
<td>Synthesis of polymers: Coordination polymerization.</td>
</tr>
<tr>
<td>14th</td>
<td>Synthesis of polymers: Step polymerization II.: Polyaddition.</td>
</tr>
</tbody>
</table>

Requirements:

- *for a signature*

Attendance at **lectures** is recommended, but not compulsory. Active participation is rewarded by
the teacher in every class. During the semester there is one end-term test in the 15th week for an offered grade (optional). Students have to sit for the tests.

for a grade

The course ends in an **examination**.
The minimum requirement for the end-term test and the examination respectively is 50%. Based on the score of the test, the grade for the test and the examination is given according to the following table:

<table>
<thead>
<tr>
<th>Score</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-49</td>
<td>fail (1)</td>
</tr>
<tr>
<td>50-61</td>
<td>pass (2)</td>
</tr>
<tr>
<td>62-74</td>
<td>satisfactory (3)</td>
</tr>
<tr>
<td>75-87</td>
<td>good (4)</td>
</tr>
<tr>
<td>88-100</td>
<td>excellent (5)</td>
</tr>
</tbody>
</table>

If the score the test is below 50, students can take a retake test in conformity with the Education and Examination Rules and Regulations.

an offered grade:
it may be offered for students if the grade of the end-term test is at least satisfactory (3).

Person responsible for course: Prof. Sándor Kéki, full professor, PhD, DSc

Lecturer: Prof. Sándor Kéki, full professor, PhD, DSc

Title of course: Materials of Construction
Code: TTKBE1211_EN
ECTS Credit points: 3

Type of teaching, contact hours
- lecture: 2 hours/week
- practice: -
- laboratory: -

Evaluation: exam

Workload (estimated), divided into contact hours:
- lecture: 28 hours
- practice: -
- laboratory: -
- home assignment: 32 hours
- preparation for the exam: 30 hours
Total: 90 hours

Year, semester: 3rd year, 1st semester

Its prerequisite(s): TTKBE0611_EN

Further courses built on it: -

Topics of course
Atomic structure of metals, structural forms of their crystal lattice, the effect of the crystallization

Literature

Compulsory:

Recommended:

Course objective/intended learning outcomes

a) Knowledge
- He/She knows the properties of the most important chemicals, their productions and applications.
- He/She knows the principles of instruments in chemical industries and technologies, and their operative parts, and their connections

b) Abilities
- He/She understands and able to describe the elements of industrial and technological units, their operations including the connectivity options.
- He/She is able to apply those directives that necessary to operate instruments and control processes in a safe, cost effective way as well as avoid any problems causing health issues.

c) Attitude
- He/She makes effort to keep his/her chemical engineering knowledge updated related to his/her professional goals.
- He/She makes effort to improve and apply the practical methods with new results and experiences.

d) Autonomy and responsibility
- He/She tends to establish new solutions and technologies.
- Following directions he/she can work without supervision considering all quality and safety rules.

Schedule:

1st week
Atomic structure of metals, structural forms of their crystal lattice. Pure metals.

2nd week
Explanation for the mechanical properties of single-phase metals by their crystal lattice.
Modification of the mechanical properties by forming – defects of the lattice.

3rd week

4th week
The effect of grain size on the mechanical properties. Polymorphic transformations.

5th week
Multi-phase metals, properties of alloys, their description by constitutional diagrams.

6th week
Types and properties of iron-carbon alloys.

7th week
Mechanical properties of unalloyed steels, physical basics of γ-α transformations, isothermic transformation of steels.

8th week
The effect of various alloying constituents. Types of cast iron.

9th week
Properties and applications of non-ferrous metals.

10th week

11th week
Mechanical testing of materials, destructive and non-destructive methods.

12th week
Types of corrosion, methods of protection.

13th week
Properties and applications of nonmetal materials: wood, glass, enamel, porcelain.

14th week
Properties and applications of nonmetal materials: ceramics, concrete, stones, plastics.

Requirements:
- for a signature
 Attendance at lectures is recommended, but not compulsory. Active participation is rewarded by the teacher in every class.
 Students have to submit an essay about a given topic as scheduled minimum on a sufficient level. During the semester there is one end-term test in the 15th week for an offered grade (optional). Students have to sit for the tests.

- for a grade
 The course ends in an examination. Based on the average of the grades of the essay and the examination, the exam grade is calculated as an average of them:
 The minimum requirement for the end-term test and the examination respectively is 50%. Based on the score of the test, the grade for the test and the examination is given according to the following table:

<table>
<thead>
<tr>
<th>Score</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-49</td>
<td>fail (1)</td>
</tr>
<tr>
<td>50-61</td>
<td>pass (2)</td>
</tr>
<tr>
<td>62-74</td>
<td>satisfactory (3)</td>
</tr>
<tr>
<td>75-87</td>
<td>good (4)</td>
</tr>
<tr>
<td>88-100</td>
<td>excellent (5)</td>
</tr>
</tbody>
</table>

If the score the test is below 50, students can take a retake test in conformity with the Education and
Examination Rules and Regulations.

an offered grade:
it may be offered for students if the grade of both the essay and the end-term test is at least satisfactory (3). The offered grade is the average of them.

Person responsible for course: Dr. Dávid Rácz, assistant professor, PhD

Lecturer: Dr. Dávid Rácz, assistant professor, PhD

<table>
<thead>
<tr>
<th>Title of course</th>
<th>ECTS Credit points: 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plastics and Processing I.</td>
<td>2</td>
</tr>
<tr>
<td>Code: TTKBE1212_EN</td>
<td></td>
</tr>
</tbody>
</table>

Type of teaching, contact hours
- lecture: 2 hours/week
- practice: -
- laboratory: -

Evaluation: exam

Workload (estimated), divided into contact hours:
- lecture: 20 hours
- practice: -
- laboratory: -
- home assignment: 15 hours
- preparation for the exam: 25 hours
Total: 60 hours

Year, semester: 3rd year, 2nd semester

Its prerequisite(s): TTKBE0302_EN

Further courses built on it: -

Topics of course
The polymer industry in the world and in the region, perspectives. Synthesis of polyethylene (high-, low- and mid-pressure method), applications. Production of polypropylene, development of the technology, applications. Production of polystyrene (including high impact and expanded PS), application. Production methods of PVC an other chlorine- and fluorine-containing polymers, applications. Synthesis of poly(vinylacetate), poly(vinylalcohol), poly(vinyl-pyrrolidone), polyamides. Production of Polyamide-6, applications. Synthesis and properties of the most important polydienes, elastomers. Synthesis and properties of polycrlylates, polyesters, polyethers, epoxy and alkyd resins, polyurethanes, silicones and their derivatives. Additives of the polymer industry.

Literature

Compulsory:
Course objective/intended learning outcomes

a) Knowledge
- He/She knows the properties of the most important chemicals, their productions and applications.
- He/She has a mathematical and scientific background to understand processes in chemical and chemistry related industries.

b) Abilities
- He/She capable to apply the learned methods, models and plannings of chemical technology and chemical processes through calculations.
- He/She understands and able to describe the elements of industrial and technological units, their operations including the connectivity options.

c) Attitude
- He/She is open to accept environmentally efficient technologies, and for the application of new, innovative and advanced methods in economy.
- He/She makes effort to improve and apply the practical methods with new results and experiences.

d) Autonomy and responsibility
- Following directions he/she can work without supervision considering all quality and safety rules.
- He/She shares experiences with others to help them.

Schedule:

<table>
<thead>
<tr>
<th>Week</th>
<th>Topics</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>Definition of polymers and plastics. Classification, types and aims of additives.</td>
</tr>
<tr>
<td>2nd</td>
<td>Synthesis, properties and application of polyethylene and polypropylene, their copolymers.</td>
</tr>
<tr>
<td>3rd</td>
<td>Polyisobutylene, butyl rubber and thermoplastical elastomers.</td>
</tr>
<tr>
<td>4th</td>
<td>Polystyrene, polybutadiene, poly(acrylonitrile) and their copolymers (SAN, SBR, NBR, ABS).</td>
</tr>
<tr>
<td>5th</td>
<td>Chlorine- and fluorine-containing polymers (PVC, chlorinated PVC, PVdC, PTFE, PTFCE).</td>
</tr>
<tr>
<td>6th</td>
<td>Poly(vinylacetate), poly(vinylalcohol) and their derivatives.</td>
</tr>
<tr>
<td>7th</td>
<td>Poly(vinyl-pyrrolidone) and related polymers.</td>
</tr>
<tr>
<td>8th</td>
<td>Synthesis and properties of the most important polydienes, elastomers (PB, polyisoprene, polychloroprene). Vulcanization.</td>
</tr>
<tr>
<td>9th</td>
<td>Synthesis and properties of polyacrylates and their derivatives.</td>
</tr>
</tbody>
</table>
10th week
Synthesis, properties and application of saturated and non-saturated polyesters, polycarbonates.
Alkyd resins

11th week
Polyethers (aromatic and aliphatic types). Epoxy resins and their crosslinking.

12th week
Polyamides and polyimides. Synthesis and properties of phenol formaldehyde and aminoplast resins.

13th week
Polyurethanes, silicones, cellulose derivatives.

14th week
Test writing for an offered grade.

Requirements:
- for a signature
Attendance at lectures is recommended, but not compulsory. Active participation is rewarded by the teacher in every class.
During the semester there is one end-term test in the 14th week for an offered grade (optional). Students have to sit for the tests.
- for a grade
The course ends in an examination.
The minimum requirement for the end-term test and the examination respectively is 50%. Based on the score of the test, the grade for the test and the examination is given according to the following table:

<table>
<thead>
<tr>
<th>Score</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-49</td>
<td>fail (1)</td>
</tr>
<tr>
<td>50-61</td>
<td>pass (2)</td>
</tr>
<tr>
<td>62-74</td>
<td>satisfactory (3)</td>
</tr>
<tr>
<td>75-87</td>
<td>good (4)</td>
</tr>
<tr>
<td>88-100</td>
<td>excellent (5)</td>
</tr>
</tbody>
</table>

If the score the test is below 50, students can take a retake test in conformity with the Education and Examination Rules and Regulations.

-an offered grade:
it may be offered for students if the grade of the end-term test is at least satisfactory (3).

Person responsible for course: Prof. Sándor Kéki, full professor, PhD, DSc

Lecturer: Prof. Sándor Kéki, full professor, PhD, DSc

Title of course: Plastics and Processing I.
Code: TTKBL1212_EN
ECTS Credit points: 2

Type of teaching, contact hours
- lecture: -
- practice: -
- laboratory: 2 hours/week

Evaluation: practice grade
Workload (estimated), divided into contact hours:
- lecture: -
- practice: -
- laboratory: 28 hours
- preparation for the tests: 30 hours
Total: 58 hours

Year, semester: 3rd year, 2nd semester

Its prerequisite(s): TTKBE0611_EN

Further courses built on it: -

Topics of course

Literature
Recommended:
1. ISO standards (one copy can be found in the laboratory)
2. Syllabus provided by the Department of Applied Chemistry

Course objective/intended learning outcomes

a) Knowledge
- He/She knows the production technologies of the most important polymers.

b) Abilities
- He/She is able to run measurements both on laboratory and scaled up systems, and evaluate the obtained data at all steps in the development.
- He/She is able to conduct professional communication from the above area.
- He/She is able to expand/improve its technological know-how in new tasks.

c) Attitude
- He/She is open to gain new knowledge in the subject.
- During his/her work he/she committed to apply the quality concerns including the new assurances.

d) Autonomy and responsibility
- He/She tends to establish new solutions and technologies.
- He/She with a little professional guidance is able to carry out smaller sub-tasks independently.

Schedule:
1st week
Identification of plastics by simple methods.
2nd week
Molding of plastic sheets. Shore hardness determination.
3rd week
Determination of mechanical properties of plastics based on tensile test.
4th week
Impact testing of polypropylenes.
5th week
Determination of Ball Indentation and Rockwell Hardness of polymers.

6th week
Determination of Ball Indentation and Rockwell Hardness of polymers.

7th week
Test writing.

Requirements:
The laboratory practices will be done in blocks (4 hours a week, 7 weeks). Attendance at laboratory practices is compulsory.
All measuring groups will prepare a laboratory notebook (laboratory record) after every practice.
The practice ends with a test for a partial grade. The test will cover the theoretical and the practical part of the laboratory practices. (The test is also compulsory!) The minimum requirement for the test is 50%. The grade is given according to the following table:

<table>
<thead>
<tr>
<th>Score</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-49</td>
<td>fail (1)</td>
</tr>
<tr>
<td>50-59</td>
<td>pass (2)</td>
</tr>
<tr>
<td>60-79</td>
<td>satisfactory (3)</td>
</tr>
<tr>
<td>80-89</td>
<td>good (4)</td>
</tr>
<tr>
<td>90-100</td>
<td>excellent (5)</td>
</tr>
</tbody>
</table>

The practice grade will be calculated as a weighted average by the following way: 60% of the test result, 40% of the laboratory notebook.

Person responsible for course: Prof. Sándor Kéki, full professor, PhD, DSc

Lecturer: Prof. Sándor Kéki, full professor, PhD, DSc
Application of spreadsheets: mathematical operations, equations, charts, curve fitting, least-squares fitting, numerical integration, numerical derivation, solving of nonlinear equations, solving of set of equations, linear regression, matrix operations, introductions to statistics.

Literature

Recommended:

Course objective/intended learning outcomes

a) **Knowledge**
 - He/She knows the basic principles, the planning and controlling options in technology of chemical processes and industrial tasks.

b) ** Abilities**
 - He/She capable to apply the learned methods, models and plans of chemical technology and chemical processes through calculations.

c) **Attitude**
 - He/She makes effort to improve and apply the practical methods with new results and experiences.

d) **Autonomy and responsibility**
 - Following directions he/she can work without supervision considering all quality and safety rules.

Schedule:

1st week
Implementation of mathematical functions in the spreadsheet software. Plotting the result in \(xy\) scatter graphs.

2nd week
Solving calculation problems in chemical engineering by implemented mathematical functions.

3rd week
Numerical differentiation by spreadsheet software and its application for problem-solving in chemical engineering.

4th week
Numerical integration by spreadsheet software and its application for problem-solving in chemical engineering.

5th week
Regression, curve fitting

6th week
The application of interpolation for problem-solving in chemical engineering.

7th week
Solving nonlinear equations by spreadsheet software and its application for problem-solving in chemical engineering.
8th week
Solving nonlinear set of equations by spreadsheet software and its application for problem-solving in chemical engineering.

9th week
Matrix operations

10th week
Solving sets of linear equations by matrix operations.

11th week
Application of spreadsheets in combinatorics and probability.

12th week

13th week
Maxwell–Boltzmann molecular speed distribution for gases. Typical speeds.

14th week
Application of t-tests for problem-solving in chemical engineering.

Requirements:
- for a signature
 Participation at the classes is compulsory. A student must attend the classes and may not miss more than three times during the semester. In case a student does so, the subject will not be signed and the student must repeat the course. Attendance at the classes will be recorded by the practice leader. Being late is equivalent with an absence. In case of further absences, a medical certificate needs to be presented. Missed classes should be made up for at a later date, to be discussed with the tutor. Active participation is evaluated by the teacher in every class. If a student’s behavior or conduct doesn’t meet the requirements of active participation, the teacher may evaluate his/her participation as an absence because of the lack of active participation in class.

- for the practice grade
 The course ends with a test in the 14th week. The minimum requirement for the test is 50%. The grade is given according to the following table:

<table>
<thead>
<tr>
<th>Score</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-49</td>
<td>fail (1)</td>
</tr>
<tr>
<td>50-59</td>
<td>pass (2)</td>
</tr>
<tr>
<td>60-74</td>
<td>satisfactory (3)</td>
</tr>
<tr>
<td>75-89</td>
<td>good (4)</td>
</tr>
<tr>
<td>90-100</td>
<td>excellent (5)</td>
</tr>
</tbody>
</table>

 The students are allowed to retake the test once to improve their scores. Further improvement is in conformity with the EDUCATION AND EXAMINATION RULES AND REGULATIONS.

Person responsible for course: Dr. Ákos Kuki, associate professor, PhD

Lecturer: Dr. Ákos Kuki, associate professor, PhD

Title of course: Process Control I.
Code: TTKBG0612_EN
ECTS Credit points: 4

Type of teaching, contact hours
- lecture: 2 hours/week
- practice: 1 hours/week
Evaluation: term grade

Workload (estimated), divided into contact hours:
- lecture: 28 hours
- practice: 14 hours
- laboratory: -
- home assignment: 56 hours
- preparation for the exam: 16 hours

Total: 114 hours

Year, semester: 2nd year, 2nd semester

Its prerequisite(s): TTKBL0911_EN

Further courses built on it: TTKBG0613_EN

Topics of course

Literature

Compulsory:

Recommended:

Course objective/intended learning outcomes

a) Knowledge

- The students learn the simpler structure of process control systems which are used in chemical industry. The students learn to use and plot the piping and instrumentation (P&I) diagram. The students learn the basics of signal transmission and dynamic behaviour of chemical equipments and
control systems.

b) Abilities
- The students are able to comprehend the simpler process control systems, recognise the manipulated and control variables.
- The students are able to comprehend the signal transmission of a technological process and the dynamic behaviour of chemical equipments and control systems.
- They can use the P&I diagram of chemical processes.

c) Attitude
- The students are open to learn and accept professional, technological improvement and innovation in the chemical process control.
- The students are able to makes decisions in operation of complex technological processes.

Autonomy and responsibility
- With higher professional management, they are capable to do the operating automated chemical equipment in the chemical plant.

Schedule:

1st week

2nd week
Single input and single output systems (SISOs). Feed-back Control (FBC) system and Feed-forward Control system (FFC). Symbols of process control and P&I diagrams. Signals and hardware elements of process control systems. Operations of signals. Block diagram and schematic structure/diagram.

3rd week
Industrial examples for process control. Comparison of FBC and FFC.

4th week
Industrial examples for process control. Comparison of FBC and FFC.

5th week

6th week

7th week
Signal transmission. Basics of mathematical modelling. Total mass, component, energy and momentum conservation equations of chemical equipments and describe these balance equations for CSTR with exothermic first order chemical reaction. Solutions of different examples.

8th week
Solutions of different examples for CSTR.

9th week
Signal transmission. The basics of dynamic behaviour. The basics of transient behaviour. The signal transmission of hardware elements of process control which can be describe with ordinary linear differential equations (ODEs). The general equation of signal transmission in the time domain. Forcing functions, typical test signals.

10th week
Standard dynamic behaviours of hardware elements and processes. Proportional (P), integrative (I),
derivative (D), first order process (PT₁), second order process (PT₁T₂) and n-order process (PT₁...Tₙ).

11th week

Forcing functions’ indicated responses functions of different behaviour of hardware elements and processes. Practical examples.

12th week

Difference between steady-state behaviour and dynamic behaviour of chemical equipments. Operational point and operational line. Characteristic curves and diagrams of time domain. Transient operational mode of chemical equipments.

13th week

Self regulating and unstable systems. Practical examples for self regulating systems and their operational point.

14th week

exam

Requirements:
- for a signature

Participation in lectures and seminars. The total number of absences for the semester does not exceed three (3).

During the semester there are two tests: the mid-term test in the 8th week and the end-term test in the 15th week. Students have to sit for the tests
- for a grade

At the end of the course based on the result of written exam (100%).
0 % - 40 % mark: 1 (fail), > 40 % - 60 % mark: 2 (pass, sufficient), > 60 % - 77 % mark: 3 (satisfactory or average), > 77 % - 90 % mark: 4 (good), > 90 % mark: 5 (excellent).

In the case of failure to perform of first exam, it is possible to write a second written exam.

Person responsible for course: Dr. István Árpád, assistant professor, PhD

Lecturer: Dr. István Árpád, assistant professor, PhD

Title of course: Process Control II.
Code: TTKBG0613_EN

ECTS Credit points: 3

Type of teaching, contact hours
- lecture: -
- practice: 3 hours/week
- laboratory: -

Evaluation: term grade

Workload (estimated), divided into contact hours:
- lecture: -
- practice: 42 hours
- laboratory: -
- home assignment: 56 hours
- preparation for the exam: 16 hours
Total: 114 hours
<table>
<thead>
<tr>
<th>Year, semester: 3rd year, 1st semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Its prerequisite(s): TTKBG0612_EN</td>
</tr>
<tr>
<td>Further courses built on it: -</td>
</tr>
</tbody>
</table>

Topics of course

Process control systems with hardware elements which are described with ODE. Determination of equivalent summation function in time domain of these FBC systems used Laplace transformation. Frequency response analysis and the Bose and Nyquist diagrams. Stability requirements for process control systems. Basics of selection, adjustment and tuning of different controller (P, PI, PID).

Literature

Compulsory:

Recommended:

Course objective/intended learning outcomes

a) Knowledge
- The students learn the simpler structure of process control systems which are used in chemical industry. The students learn to use and plot the piping and instrumentation (P&I) diagram. The students learn the basics of signal transmission and dynamic behaviour of chemical equipments and control systems.

b) Abilities
- The students are able to comprehend the simpler process control systems, recognise the manipulated and control variables.
- The students are able to comprehend the signal transmission of a technological process and the dynamic behaviour of chemical equipments and control systems.
- They can use the P&I diagram of chemical processes.

c) Attitude
- The students are open to learn and accept professional, technological improvement and
innovation in the chemical process control.
- The students are able to makes decisions in operation of complex technological processes.

Autonomy and responsibility
- With higher professional management, they are capable to do the operating automated chemical equipment in the chemical plant.

Schedule:

<table>
<thead>
<tr>
<th>Week</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>Introduction. Repeat of standard dynamic behaviours chemical equipments and process control systems. Dead time.</td>
</tr>
<tr>
<td>2nd</td>
<td>Oscillating second order process (P₂T). Examples for P₂T.</td>
</tr>
<tr>
<td>3rd</td>
<td>The Laplace Transform. Example for solution of ordinary linear differential equations.</td>
</tr>
<tr>
<td>4th</td>
<td>Definition of transfer function. Transfer functions of different dynamic behaviour elements.</td>
</tr>
<tr>
<td>5th</td>
<td>Examples for determination of response function in time domain used Laplace transformation.</td>
</tr>
<tr>
<td>6th</td>
<td>Transfer function of FBC with proportional (P) controller. Comparison the behaviour of process with controller and without controller. Residual control discrepancy. Transfer function of FBC with integral (I) controller.</td>
</tr>
<tr>
<td>8th</td>
<td>Routh-Hurwitz criterion.</td>
</tr>
<tr>
<td>10th</td>
<td>Nyquist and Bode diagrams of different behaviour elements.</td>
</tr>
<tr>
<td>11th</td>
<td>Geometrical conditions of stability, Nyquist and Bode criteria. Impact of dead time.</td>
</tr>
<tr>
<td>13th</td>
<td>Introduction to using of Matlab Control System Toolbox and Simulink software systems.</td>
</tr>
<tr>
<td>14th</td>
<td>Exam</td>
</tr>
</tbody>
</table>

Requirements:

- **for a signature**
- Participation in lectures and seminars. *The total number of absences for the semester does not exceed three (3).*
During the semester there are two tests: the mid-term test in the 8th week and the end-term test in the 15th week. Students have to sit for the tests.

- for a grade
At the end of the course based on the result of written exam (100%).
0 % - 40 % mark: 1 (fail), > 40 % - 60 % mark: 2 (pass, sufficient), > 60 % - 77 % mark: 3 (satisfactory or average), > 77 % - 90 % mark: 4 (good), > 90 % mark: 5 (excellent).
In the case of failure to perform of first exam, it is possible to write a second written exam.

Person responsible for course: Dr. István Árpád, assistant professor, PhD

Lecturer: Dr. István Árpád, assistant professor, PhD

| Title of course: Mechanics for Chemical Engineers I. | ECTS Credit points: 3 |
| Code: MFVGE31V03_EN | |

| Type of teaching, contact hours |
| - lecture: 2 hours/week |
| - practice: 1 hours/week |
| - laboratory: - |

| Evaluation: term grade |

| Workload (estimated), divided into contact hours: |
| - lecture: 28 hours |
| - practice: 14 hours |
| - laboratory: - |
| - home assignment: 28 hours |
| - preparation for the exam: 20 hours |
| Total: 90 hours |

| Year, semester: 2nd year, 1st semester |

| Its prerequisite(s): TTFBE2111_EN, TTKBE0201_EN, TTKBE0301_EN, TTKBE0401_EN |

| Further courses built on it: MFVGE32V03_EN |

| Topics of course |
| In seminar there are four tasks to elaborate: to elaborate the workshop drawing of different machine |

elements and components.

Literature

Complimentary:

Recommended:

Course objective/intended learning outcomes

a) Knowledge
- He/she fundamentally knows principles and means of machine design, procedures and operating processes of machine manufacturing, control techniques and operating processes.
- He/she thoroughly knows the structural materials applied in the field of mechanical engineering, means of manufacturing, conditions on their applications.

b) Abilities
- He/she is able to apply the most important terminology, theories, procedures of the given engineering field when completing the relevant tasks.
- He/she is able to create fundamental models of engineering systems and processes.

c) Attitude
- He/she is open to learn and accept professional, technological improvement and innovation in his/her profession and convey it genuinely.
- He/she makes a decision in complex and unexpected decision cases by completely taking into account legal and ethical norms.

d) Autonomy and responsibility
- Even in unexpected decision-making situations he/she is capable of considering complex, fundamental questions from his/her professional field and elaborating them on the basis of the given sources.
- He/she keeps track of facilitating the professional development of his/her co-workers, assists them with such endeavours by applying the principle of equal rights to accessibility.

Schedule:

1st week
Lecture: Drawing standards, formal requirements of machine drawings. Drawing sheet dimensions, title block, defining the line types and thickness groups. Standardized letter and figure shape and sizes, scales, full size, reduction scales, enlarged scales.
Practice: issuing the task 1: Lettering

2nd week
Lecture: Defining the surfaces of a part. Presentation method in machine drawing, views, auxiliary view, local view, breaking, sectional views and sections.
Practice: issuing the task 2: Drawing Machine Parts. Practicing the presentation methods.

3rd week
Lecture: Complex sectional views, removed element, removed sections, specific sectional views and sections, conventional practice in machine drawing.
Practice: submitting the task 1: Lettering, elaborating the task 2. Practicing the presentation methods.

4th week
Practice: elaborating the task 2. Practicing the presentation methods.

5th week
Lecture: ISO Tolerance system. Basic size, actual size, limits, deviations, fundamental deviation
Practice: Applying the dimensioning methods to dimensioning parts. Submitting the task 2. Issuing the task 3: Shaft drawing.

6th week
Practice: elaborating the task 3.

7th week
Lecture: Defining the surface roughness. Feasible roughness with different processing methods. Correlation between the surface roughness and the IT grade of dimension.
Practice: submitting the task 3, issuing the task 4: Screw Fastening and Joints.

8th week
Mid-term test
Practice: elaborating the task 4.

9th week
Practice: elaborating the task 4.

10th week
Lecture: Contact among machine elements. Elements for energy process in machine systems. Elements for material flow in machine systems: pipes, pipe fittings, tanks etc.
Practice: study drive train components in the lab.

11th week
Practice: submitting the task 4.

12th week
Practice: Destructive test methods.

13th week
Practice: Non-destructive test methods.

14th week
Mid-term test

Lecture: Formation of welded bound by smelting processes. Destruction tests and non-destruction tests of welded bounds.

Practice: Conducting destructive and non-destructive tests.

Requirements:
- **for a signature**

 Attendance on the lectures is recommended, but not compulsory.

 Participation at practice is compulsory. Student must attend the practices and my not miss more than three practice during the semester. In case a student misses more than three, the subject will not be signed and the student must repeat the course. Student can’t make up a practice with another group. The attendance on practice will be recorded by the practice leader. Being late is counted as an absence. In case of further absences, a medical certificate needs to be presented. Missed practices should be made up for at a later date, to be discussed with the tutor. Students are required to bring the drawing tasks and drawing instruments for the course with them to each practice. Active participation is evaluated by the teacher in every class. If student’s behavior or conduct doesn’t meet the requirements of active participation, the teacher may evaluate their participation as an absence due to the lack of active participation in class.

 Students have to submit all the four drawing tasks as scheduled minimum on a sufficient level. During the semester there are two tests: the mid-term test is in the 8th week and the end-term test in the 14th week. Students have to sit for the tests.

- **for a grade**

 The course ends in mid-semester grade. Based on the average of the marks of the drawings and the average of the test results, the mid-semester grade is calculated as an average of them:

 - average grade of the four drawing tasks
 - average grade of the two tests

 The minimum requirement for the mid-term and end-term tests and the examination respectively is 60%. Based on the score of the tests separately, the grade for the tests and the examination is given according to the following table:

<table>
<thead>
<tr>
<th>Score</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-59</td>
<td>fail (1)</td>
</tr>
<tr>
<td>60-69</td>
<td>pass (2)</td>
</tr>
<tr>
<td>70-79</td>
<td>satisfactory (3)</td>
</tr>
<tr>
<td>80-89</td>
<td>good (4)</td>
</tr>
<tr>
<td>90-100</td>
<td>excellent (5)</td>
</tr>
</tbody>
</table>

 If the score of any test is below 60, students can take a retake test in conformity with the EDUCATION AND EXAMINATION RULES AND REGULATIONS.

- **an offered grade:**

 it may be offered for students if the average grade of the four designing tasks is at least satisfactory (3) and the average of the mid-term and end-term tests is at least satisfactory (3). The offered grade is the average of them.

Person responsible for course: Dr. Zsolt Tiba, college professor, PhD

Lecturer: Dr. Zsolt Tiba, college professor, PhD

Title of course: Mechanics for Chemical Engineers II.
ECTS Credit points: 3
<table>
<thead>
<tr>
<th>Code: MFVGE32V03_EN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of teaching, contact hours</td>
</tr>
<tr>
<td>- lecture: 2 hours/week</td>
</tr>
<tr>
<td>- practice: 1 hour/week</td>
</tr>
<tr>
<td>- laboratory: -</td>
</tr>
<tr>
<td>Evaluation: term grade</td>
</tr>
<tr>
<td>Workload (estimated), divided into contact hours:</td>
</tr>
<tr>
<td>- lecture: 28 hours</td>
</tr>
<tr>
<td>- practice: 14</td>
</tr>
<tr>
<td>- laboratory: -</td>
</tr>
<tr>
<td>- home assignment: 10 hours</td>
</tr>
<tr>
<td>- preparation for the tests: 40 hours</td>
</tr>
<tr>
<td>Total: 92 hours</td>
</tr>
<tr>
<td>Year, semester: 2nd year, 2nd semester</td>
</tr>
<tr>
<td>Its prerequisite(s): MFVGE31V03_EN</td>
</tr>
<tr>
<td>Further courses built on it: MFVGE33V03_EN</td>
</tr>
</tbody>
</table>

Topics of course

Transportation of fluids: Pascal's law, Bernoulli-equation, flow measurement, pressure drop and friction losses in pipes, pumps, head, pump power calculations, maximum suction height, cavitation, net positive suction head (NPSH), characteristic curves for centrifugal pump, duty point calculation.

Electric motors: Lorentz force, categorization of electric motors, DC motors, synchronous AC motors, single phase induction motors, three phase AC induction motors, basic calculations.

Heat engines: four-stroke engines (Otto cycle), two-stroke engines (Otto cycle), diesel engines, thermodynamics (Otto cycle), engine efficiency of thermal engines, octane and cetane values, Wankel engine, gas turbines, jet engines.

Literature

Recommended:

Course objective/intended learning outcomes

a) Knowledge
- He/She knows the chemical methods for measurements or analysis, their principles and instrumental background, and their applicabilities.

b) Abilities
- He/She capable to apply the learned methods, models and plannings of chemical technology and
chemical processes through calculations.
- He/She is able to apply those directives that necessary to operate instruments and control processes in a safe, cost effective way as well as avoid any problems causing health issues.
- He/She is able to use documentation (either online or printed) related to the current field, including the scientific literature both on his/her native language and English.

c) **Attitude**
- He/She makes effort to improve and apply the practical methods with new results and experiences.

d) **Autonomy and responsibility**
- He/She tends to establish new solutions and technologies.
- He/She shares experiences with others to help them.

Schedule:

<table>
<thead>
<tr>
<th>Week</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>Transportation of fluids: Pascal's law, Bernoulli-equation.</td>
</tr>
<tr>
<td>2nd</td>
<td>Flow measurement, pressure drop and friction losses in pipes.</td>
</tr>
<tr>
<td>3rd</td>
<td>Pump types used in the chemical industry.</td>
</tr>
<tr>
<td>4th</td>
<td>Head and pump power calculations.</td>
</tr>
<tr>
<td>5th</td>
<td>Maximum suction height, cavitation.</td>
</tr>
<tr>
<td>6th</td>
<td>Net positive suction head (NPSH)</td>
</tr>
<tr>
<td>7th</td>
<td>Characteristic curves for centrifugal pump, duty point calculation.</td>
</tr>
<tr>
<td>8th</td>
<td>Lorentz force, force on current carrying wires.</td>
</tr>
<tr>
<td>9th</td>
<td>Categorization of electric motors, DC motors.</td>
</tr>
<tr>
<td>10th</td>
<td>Synchronous AC motors, single phase induction motors.</td>
</tr>
<tr>
<td>11th</td>
<td>Three phase AC induction motors, basic calculations related to electric motor.</td>
</tr>
<tr>
<td>12th</td>
<td>Heat engines, four-stroke engines (Otto cycle), two-stroke engines (Otto cycle).</td>
</tr>
<tr>
<td>13th</td>
<td>Diesel engines, thermodynamics (Otto cycle), engine efficiency of thermal engines.</td>
</tr>
<tr>
<td>14th</td>
<td>Octane and cetane values, Wankel engine, gas turbines, jet engines.</td>
</tr>
</tbody>
</table>

Requirements:

- for a signature

Attendance at lectures is recommended, but not compulsory.
Participation at the practice classes is compulsory. A student must attend the classes and may not
miss more than three times during the semester. In case a student does so, the subject will not be signed and the student must repeat the course. Attendance at the classes will be recorded by the practice leader. Being late is equivalent with an absence. In case of further absences, a medical certificate needs to be presented.

for the term grade

The course ends with test for the term grade. The minimum requirement for the test is 50%. The grade is given according to the following table:

<table>
<thead>
<tr>
<th>Score</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-49</td>
<td>fail (1)</td>
</tr>
<tr>
<td>50-59</td>
<td>pass (2)</td>
</tr>
<tr>
<td>60-74</td>
<td>satisfactory (3)</td>
</tr>
<tr>
<td>75-89</td>
<td>good (4)</td>
</tr>
<tr>
<td>90-100</td>
<td>excellent (5)</td>
</tr>
</tbody>
</table>

The solution of the home assignments is counted into the score of the test by 5%.

The students can retake the test in conformity with the EDUCATION AND EXAMINATION RULES AND REGULATIONS.

Person responsible for course: Dr. Sándor Pálinkás, senior lecturer, PhD

Lecturer: Dr. Ákos Kuki, associate professor, PhD

<table>
<thead>
<tr>
<th>Title of course:</th>
<th>Mechanics for chemical engineers III.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code:</td>
<td>MFVGE33V03-EN</td>
</tr>
<tr>
<td>ECTS Credit points:</td>
<td>3</td>
</tr>
</tbody>
</table>

Type of teaching, contact hours
- lecture: 2 hours/week
- practice: 1 hours/week
- laboratory: -

Evaluation: exam

Workload (estimated), divided into contact hours:
- lecture: 28 hours
- practice: 14 hours
- laboratory: -
- home assignment: 40 hours
- preparation for the exam: 40 hours

Total: 122 hours

Year, semester: 3rd year, 1st semester

Its prerequisite(s): MFVGE31V03, MFVGE32V03

Further courses built on it: -

Topics of course

Heat exchangers and reactors.
Thermal conductivity. Thermal convection, heat transfer and basic concepts of heat exchangers.

Literature

Compulsory:
- James O Wilkes - Fluid Mechanics for Chemical Engineers Second Edition with Microfluidics and CFD
- Reactor Design for Chemical Engineers, J. M. Winterbottom, Michael King
- EFFECTIVE THERMAL DESIGN OF COOLING TOWERS, By Jonny Goyal Air Liquide Engineering and Construction, Lurgi India | February 1, 2012
- Coulson and Richardson's Chemical Engineering (Seventh Edition) Volume 1b: Heat and Mass Transfer: Fundamentals and Applications 2018, Pages 471-528 Coulson and Richardson's Chemical Engineering Chapter 5 - Applications in Humidification and Water Cooling

Course objective/intended learning outcomes

Knowledge:
Learn about the characteristics, operation and structure of thermal engineering machines. The student knows the operation of the most important heat transfer and refrigeration machines, their basic laws and their choices. It processes the measurement results on a computer, evaluates and interprets the results obtained. They can use alternative methods to select a device for the task they want.

Ability:
Acquire skills in the numerical solution of basic engineering thermal engineering tasks, technical tables and graphical auxiliary materials, it independently performs the design of the designated heat exchanger, evaluates the results and interprets it.
- It is able to interpret the specified quantities, compare with literary values, make suggestions and equipment selection.

Attitude:
It is open to the technical understanding of the operational and laboratory environment, natural laws are mathematical formulation and the use of theoretical knowledge in practice.

Autonomy and responsibility:
The tasks can be independently performed, interpreted and evaluated realistically.

Schedule:
1st week
The basics of technical heat. Heat transfer is theoretical Fundamentals. Thermal conductivity, Convective heat transfer, thermal transmittance. Logarithmic medium temperature difference Heat transfer coefficient k.

2nd week
Heat convection without phase change is free and forced flow.

3rd week
Heat transfer during phase change. fin heat transfer Heat transfer in mixer.

4th week
Applications and Types of Tubular Heat Exchangers. Dimensional principles.
thermal radiation

5th week
Other heat exchangers.

6th week
Direct heat exchanger heat exchangers Condensation condensers.

7th week
Cooling towers.

8th week

9th week

10th week

11th week
Isothermal and Adiabatic Reactors. The reactors thermal stability

12th week
Examples of industrial reactors. Stability of reactors and selection.

13th week

14th week
Systematic repetition of thermal operations.

Requirements:
Attendance at lectures is recommended, but not compulsory. Participation at practice classes is compulsory. A student must attend the practice classes and may not miss more than three times during the semester.

Students have to submit all the two designing tasks as scheduled minimum on a sufficient level. During the semester there are two tests: the mid-term test in the 8th week and the end-term test in the 15th week. Students have to sit for the tests.

The course ends in an examination. Based on the average of the grades of the designing tasks and the examination, the exam grade is calculated as an average of them:

- the average grade of the two designing tasks
- the result of the examination

The minimum requirement for the mid-term and end-term tests and the examination respectively is 60%. Based on the score of the tests separately, the grade for the tests and the examination is given according to the following table:

<table>
<thead>
<tr>
<th>Score</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-59</td>
<td>fail (1)</td>
</tr>
<tr>
<td>60-69</td>
<td>pass (2)</td>
</tr>
<tr>
<td>70-79</td>
<td>satisfactory (3)</td>
</tr>
<tr>
<td>80-89</td>
<td>good (4)</td>
</tr>
<tr>
<td>90-100</td>
<td>excellent (5)</td>
</tr>
</tbody>
</table>

If the score of any test is below 60, students can take a retake test in conformity with the EDUCATION AND EXAMINATION RULES AND REGULATIONS.

-an offered grade:
it may be offered for students if the average grade of the two designing tasks is at least satisfactory (3) and the average of the mid-term and end-term tests is at least satisfactory (3). The offered grade is the average of them.

Person responsible for course: Mr. Gábor Balogh, instructor

Lecturer: Mr. Gábor Balogh, instructor

Title of course: Unit Operations I
Code: TTKBG0614_EN
ECTS Credit points: 6

Type of teaching, contact hours
- lecture: 2 hours/week
- practice: 3 hours/week
- laboratory: -

Evaluation: exam

Workload (estimated), divided into contact hours:
- lecture: 28 hours
- practice: 42 hours
- laboratory: -
- home assignment: 50
- preparation for the exam: 60 hours
Total: 180 hours

Year, semester: 2nd year, 1st semester

Its prerequisite(s): TTKBE0201_EN, TTKBE0301_EN, TTKBE0401_EN

Further courses built on it: - TTKBG0615_EN

Topics of course

Literature

Compulsory:

Course objective/intended learning outcomes

a) Knowledge
- He/She knows the basic principles, the planning and controlling options in technology of chemical processes and industrial tasks.
- He/She knows the chemical methods for measurements or analysis, their principles and instrumental background, and their applicabilities

b) Abilities
- He/She is able to follow and control chemical processes and other technological steps concerning the quality management and quality control.

c) Attitude
- During his/her work he/she committed to apply the quality concerns including the new assurances.
- He/She can collaborate with other people and discuss their opinions in problem solving processes before making new decisions.
d) Autonomy and responsibility

- He/She can manage work and worker resources, follow and control the instruments and measuring units.
- He/She makes decisions according to his/her positions, makes suggestions to qualify his/her colleagues involving their promotions.

Schedule:

1st week

2nd week

3rd week
The fundamental equation of thermodynamics. Conditions of equilibrium, driving force, rate of processes. Degrees of freedom of a chemical system.

4th week

5th week
The general transport equation. Differential and integral form of balance equations valid for one and two phase unit operations. The Damköhler equations. The Onsager theory.

6th week

7th week
Similitude and modelling. Dimensional analysis, dimensionless numbers.

8th week
Mass and energy balances for simple and complex unit operations.

9th week

10th week

11th week

12th week

13th week

14th week
Terminal velocity of sedimentation. Stokes' law. Drag coefficient as a function of Reynolds number. Apparatus for settling, dust removers, cyclones.

Requirements:
- for a signature
Attendance at lectures is recommended, but not compulsory.
Participation at practice classes is compulsory. A student must attend the practice classes and may not miss more than three times during the semester. In case a student does so, the subject will not be signed and the student must repeat the course. A student can’t make up any practice with another group. Attendance at practice classes will be recorded by the practice leader. Being late is equivalent with an absence. In case of further absences, a medical certificate needs to be presented. Missed practice classes should be made up for at a later date, to be discussed with the tutor.

During the semester there are two tests: the mid-term test in the 8th week and the end-term test in the 15th week. Students have to sit for the tests.
- for a grade
The course ends in an examination.
The minimum requirement for the mid-term and end-term tests and the examination respectively is 60%. Based on the score of the tests separately, the grade for the tests and the examination is given according to the following table:

<table>
<thead>
<tr>
<th>Score</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-59</td>
<td>fail (1)</td>
</tr>
<tr>
<td>60-69</td>
<td>pass (2)</td>
</tr>
<tr>
<td>70-79</td>
<td>satisfactory (3)</td>
</tr>
<tr>
<td>80-89</td>
<td>good (4)</td>
</tr>
<tr>
<td>90-100</td>
<td>excellent (5)</td>
</tr>
</tbody>
</table>

If the score of any test is below 60, students can take a retake test in conformity with the EDUCATION AND EXAMINATION RULES AND REGULATIONS.
- an offered grade:
it may be offered for students if the average grade of the mid-term and end-term tests is at least satisfactory (3). The offered grade is the average of them.

Person responsible for course: Dr. Miklós Nagy, associate professor, PhD
Lecturer: Dr. Miklós Nagy, associate professor, PhD

<table>
<thead>
<tr>
<th>Title of course: Unit Operations II</th>
<th>ECTS Credit points: 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code: TTKBG0615_EN</td>
<td></td>
</tr>
</tbody>
</table>

Type of teaching, contact hours
- lecture: 2 hours/week
- practice: 3 hours/week
- laboratory: -

Evaluation: exam

Workload (estimated), divided into contact hours:
- lecture: 28 hours
- practice: 42 hours
- laboratory: -
- home assignment: 50
- preparation for the exam: 60 hours
Total: 180 hours

Year, semester: 2nd year, 2nd semester

Its prerequisite(s): TTKBG0614_EN

Further courses built on it: - TTKBG0616_EN

Topics of course

Literature
Compulsory:
Course objective/intended learning outcomes

a) Knowledge
- He/She knows the basic principles, the planning and controlling options in technology of chemical processes and industrial tasks.
- He/She knows the chemical methods for measurements or analysis, their principles and instrumental background, and their applicabilities.

b) Abilities
- He/She is able to follow and control chemical processes and other technological steps concerning the quality management and quality control.

c) Attitude
- During his/her work he/she committed to apply the quality concerns including the new assurances.
- He/She can collaborate with other people and discuss their opinions in problem solving processes before making new decisions.

d) Autonomy and responsibility
- He/She can manage work and worker resources, follow and control the instruments and measuring units.
- He/She makes decisions according to his/her positions, makes suggestions to qualify his/her colleagues involving their promotions.

Schedule:

1st week

2nd week

3rd week

4th week

5th week
Boundary layer theory of heat transfer. The Nusselt and Prandtl number.
<table>
<thead>
<tr>
<th>Week</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>6th</td>
<td>Forced convection heat transfer.</td>
</tr>
<tr>
<td>7th</td>
<td>Natural convection heat transfer.</td>
</tr>
<tr>
<td>8th</td>
<td>Radiation heat transfer and solution of complex heat transfer problems</td>
</tr>
<tr>
<td>9th</td>
<td>Heat exchangers. Stationary heat transmission with constant temperature difference through flat and cylindrical wall. Determination of heat flow and thermal resistances.</td>
</tr>
<tr>
<td>12th</td>
<td>The aim of evaporation, Calandria, falling film and Robert-type evaporator. Multistage evaporators and their connections.</td>
</tr>
<tr>
<td>13th</td>
<td>Analogies between momentum and heat transfer. Chilton-Colburn analogy.</td>
</tr>
<tr>
<td>14th</td>
<td>Practice.</td>
</tr>
</tbody>
</table>

Requirements:

- **for a signature**

 Attendance at lectures is recommended, but not compulsory.
 Participation at practice classes is compulsory. A student must attend the practice classes and may not miss more than three times during the semester. In case a student does so, the subject will not be signed and the student must repeat the course. A student can’t make up any practice with another group. Attendance at practice classes will be recorded by the practice leader. Being late is equivalent with an absence. In case of further absences, a medical certificate needs to be presented. Missed practice classes should be made up for at a later date, to be discussed with the tutor.

During the semester there are two tests: the mid-term test in the 8th week and the end-term test in the 15th week. Students have to sit for the tests.

- **for a grade**

 The course ends in an examination.

 The minimum requirement for the mid-term and end-term tests and the examination respectively is 60%. Based on the score of the tests separately, the grade for the tests and the examination is given according to the following table:
− Score Grade
− 0-59 fail (1)
− 60-69 pass (2)
− 70-79 satisfactory (3)
− 80-89 good (4)
− 90-100 excellent (5)

If the score of any test is below 60, students can take a retake test in conformity with the EDUCATION AND EXAMINATION RULES AND REGULATIONS.

-an offered grade:
It may be offered for students if the average grade of the mid-term and end-term tests is at least satisfactory (3). The offered grade is the average of them.

Person responsible for course: Dr. Miklós Nagy, associate professor, PhD

Lecturer: Dr. Miklós Nagy, associate professor, PhD

Title of course: Unit Operations III
Code: TTKBE0616_EN

| ECTS Credit points: 6 |

Type of teaching, contact hours
- lecture: 2 hours/week
- practice: 3 hours/week
- laboratory: -

Evaluation: exam

Workload (estimated), divided into contact hours:
- lecture: 28 hours
- practice: 42 hours
- laboratory: -
- home assignment: 50
- preparation for the exam: 60 hours
Total: 180 hours

Year, semester: 3rd year, 1st semester

Its prerequisite(s): TTKBG0615_EN

Further courses built on it: -

Topics of course
Blending of solid particles.

Literature

Compulsory:

Course objective/intended learning outcomes

a) Knowledge
- He/She knows the basic principles, the planning and controlling options in technology of chemical processes and industrial tasks.
- He/She knows the chemical methods for measurements or analysis, their principles and instrumental background, and their applicabilities

b) Abilities
- He/She is able to follow and control chemical processes and other technological steps concerning the quality management and quality control.

c) Attitude
- During his/her work he/she committed to apply the quality concerns including the new assurances.
- He/She can collaborate with other people and discuss their opinions in problem solving processes before making new decisions.

d) Autonomy and responsibility
- He/She can manage work and worker resources, follow and control the instruments and measuring units.
- He/She makes decisions according to his/her positions, makes suggestions to qualify his/her colleagues involving their promotions.

Schedule:

1st week
Mass transfer theories. Two-film and boundary layer theory of component transfer.

2nd week
Absorption-desorption: Concentration-space diagram of a continuous counter current absorption unit operation. Equation of operating line.

3rd week
Transfer unit and its graphical determination. Chemisorption. Types of absorption-desorption
apparatus.

4th week
Thermal separation operations: distillation: Batch and continuous distillation, rectification. The aim of evaporation.

5th week

6th week

7th week
Crystallization and its phase diagram. Apparatus for crystallization.

8th week
Drying. Types of moisture binding. Rate of drying. Enthalpy of moist air. Types, material-and energy balance of drying apparatus

9th week
Humidification.

10th week
Methods of feed preparation and surface increase: size reduction, sieving, vaporization, homogenization: Crushers and grinders. Energy requirement of size reduction. Screening and classification. Sieve analysis

11th week
Introduction to chemical reactors.

12th week
Classification of reactors based on flow, operation mode, component stream and heat. Operation time, residence time. Concentration-time and concentration-space functions of batch and continuous reactors.

13th week

14th week
Practice.

Requirements:
- for a signature
Attendance at lectures is recommended, but not compulsory.
Participation at practice classes is compulsory. A student must attend the practice classes and may
not miss more than three times during the semester. In case a student does so, the subject will not be signed and the student must repeat the course. A student can’t make up any practice with another group. Attendance at practice classes will be recorded by the practice leader. Being late is equivalent with an absence. In case of further absences, a medical certificate needs to be presented. Missed practice classes should be made up for at a later date, to be discussed with the tutor.

During the semester there are two tests: the mid-term test in the 8th week and the end-term test in the 15th week. Students have to sit for the tests.

- for a grade

The course ends in an examination.

The minimum requirement for the mid-term and end-term tests and the examination respectively is 60%. Based on the score of the tests separately, the grade for the tests and the examination is given according to the following table:

<table>
<thead>
<tr>
<th>Score</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-59</td>
<td>fail (1)</td>
</tr>
<tr>
<td>60-69</td>
<td>pass (2)</td>
</tr>
<tr>
<td>70-79</td>
<td>satisfactory (3)</td>
</tr>
<tr>
<td>80-89</td>
<td>good (4)</td>
</tr>
<tr>
<td>90-100</td>
<td>excellent (5)</td>
</tr>
</tbody>
</table>

If the score of any test is below 60, students can take a retake test in conformity with the EDUCATION AND EXAMINATION RULES AND REGULATIONS.

-an offered grade:

it may be offered for students if the average grade of the mid-term and end-term tests is at least satisfactory (3). The offered grade is the average of them.

Person responsible for course: Dr. Miklós Nagy, associate professor, PhD

Lecturer: Dr. Miklós Nagy, associate professor, PhD

<table>
<thead>
<tr>
<th>Title of course: Computer Modeling of Chemical Technology Systems I.</th>
<th>ECTS Credit points: 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code: TTKBG0912_EN</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type of teaching, contact hours</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>lecture:</td>
<td>-</td>
</tr>
<tr>
<td>practice:2 hours/week</td>
<td></td>
</tr>
<tr>
<td>laboratory:</td>
<td>-</td>
</tr>
</tbody>
</table>

Evaluation: practice grade

Workload (estimated), divided into contact hours:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>lecture:</td>
<td>-</td>
</tr>
<tr>
<td>practice: 28 hours</td>
<td></td>
</tr>
<tr>
<td>laboratory:</td>
<td>-</td>
</tr>
<tr>
<td>preparation for the tests: 30 hours</td>
<td></td>
</tr>
<tr>
<td>Total:</td>
<td>58 hours</td>
</tr>
</tbody>
</table>

Year, semester: 3rd year, 2nd semester
Its prerequisite(s): TTKBG0911_EN

Further courses built on it: TTKBG0913_EN

Topics of course

Literature

Recommended:
2. ChemCAD tutorial file

Course objective/intended learning outcomes

a) Knowledge
- He/She has a mathematical and scientific background to understand processes in chemical and chemistry related industries.
- He/She has a knowledge on the data mining, literature browsing and the ethical concerns of chemical engineering.

b) Abilities
- He/She is able to use documentation (both online or printed) related to the current field, including the scientific literature both on his/her native language and in English.

c) Attitude
- During everyday work and installation of new technologies he/she always concerned about sustainable development.
- He/She makes effort to improve and apply the practical methods with new results and experiences.

d) Autonomy and responsibility
- Following directions he/she can work without supervision considering all quality and safety rules.

Schedule:

1st week
The main features of a process simulation software. The steps of the simulations. Drawing process flow diagrams.

2nd week
Simulation of simple reactions, evaluation of the results.

3rd week
Simulation of reactions with more feeds and unit operations, evaluation of the results.

4th week
Study of vapor-liquid equilibrium.
5th week
Modeling of flash distillation and three phase flash distillation.
6th week
Application of sensitivity study.
7th week
Introduction into the use of the controller.
8th week
Application of controller for problem-solving in chemical engineering.
9th week
Modeling of heat exchangers.
10th week
Various reactor models.
11th week
Simulation of chemical processes with reactors and separators
12th week
Simulation of chemical processes with recycling.
13th week
Simulation of more complex chemical processes.
14th week
Simulation of more complex chemical processes.

Requirements:
- for a signature
Participation at the classes is compulsory. A student must attend the classes and may not miss more than three times during the semester. In case a student does so, the subject will not be signed and the student must repeat the course. Attendance at the classes will be recorded by the practice leader. Being late is equivalent with an absence. In case of further absences, a medical certificate needs to be presented. Missed classes should be made up for at a later date, to be discussed with the tutor. Active participation is evaluated by the teacher in every class. If a student’s behavior or conduct doesn’t meet the requirements of active participation, the teacher may evaluate his/her participation as an absence because of the lack of active participation in class.
- for the practice grade
The course ends with a test in the 14th week. The minimum requirement for the test is 50%. The grade is given according to the following table:

<table>
<thead>
<tr>
<th>Score</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>0–49</td>
<td>fail (1)</td>
</tr>
<tr>
<td>50–59</td>
<td>pass (2)</td>
</tr>
<tr>
<td>60–74</td>
<td>satisfactory (3)</td>
</tr>
<tr>
<td>75–89</td>
<td>good (4)</td>
</tr>
<tr>
<td>90–100</td>
<td>excellent (5)</td>
</tr>
</tbody>
</table>

The students are allowed to retake the test once to improve their scores. Further improvement is in conformity with the EDUCATION AND EXAMINATION RULES AND REGULATIONS.

Person responsible for course: Dr. Ákos Kuki, associate professor, PhD

Lecturer: Dr. Ákos Kuki, associate professor, PhD
Title of course: Computer Modeling of Chemical Technology Systems II.
Code: TTKBG0913_EN
ECTS Credit points: 2

Type of teaching, contact hours
- lecture: -
- practice: 2 hours/week
- laboratory: -

Evaluation: practice grade

Workload (estimated), divided into contact hours:
- lecture: -
- practice: 28 hours
- laboratory: -
- preparation for the tests: 30 hours
Total: 58 hours

Year, semester: 4th year, 1st semester

Its prerequisite(s): TTKBG0912_EN

Further courses built on it: -

Topics of course
Application of a process simulation software for design and simulation of mass transfer operations (distillation, rectification, extraction, absorption, adsorption, drying). Pipe system sizing, pumps. Economic calculations.
By using the software the students can broaden their knowledge in the field of industrial devices and processes, besides they can learn novel, up to date industrial and environmental technologies.

Literature
Recommended:
2. ChemCAD tutorial file

Course objective/intended learning outcomes

a) Knowledge
- He/She has a mathematical and scientific background to understand processes in chemical and chemistry related industries.
- He/She has a knowledge on the data mining, literature browsing and the ethical concerns of chemical engineering.

b) Abilities
- He/She is able to use documentation (both online or printed) related to the current field, including the scientific literature both on his/her native language and in English.

c) Attitude
- During everyday work and installation of new technologies he/she always concerned about sustainable development.
- He/She makes effort to improve and apply the practical methods with new results and experiences.

d) Autonomy and responsibility
- Following directions he/she can work without supervision considering all quality and safety rules.

Schedule:
1st week
Fluid transportation. Pressure drop calculations in piping systems.
2nd week
Simulation and sizing of pumps.
3rd week
Simulation of piping systems, cost calculations.
4th week
Pump duty point calculation.
5th week
6th week
Modeling of distillation, *SCDS* model.
7th week
Multi step distillation, *Tower* model.
8th week
Application of stuffed columns.
9th week
Simulation of absorption.
10th week
Simulation of extraction.
11th week
Simulation of more complex chemical processes.
12th week
Simulation of more complex chemical processes.
13th week
Simulation of more complex chemical processes.
14th week
Simulation of more complex chemical processes.

Requirements:
- *for a signature*

Participation at the classes is compulsory. A student must attend the classes and may not miss more than three times during the semester. In case a student does so, the subject will not be signed and the student must repeat the course. Attendance at the classes will be recorded by the practice leader. Being late is equivalent with an absence. In case of further absences, a medical certificate needs to be presented. Missed classes should be made up for at a later date, to be discussed with the tutor. Active participation is evaluated by the teacher in every class. If a student’s behavior or conduct doesn’t meet the requirements of active participation, the teacher may evaluate his/her participation.
as an absence because of the lack of active participation in class.

for the practice grade

The course ends with a test in the 14th week. The minimum requirement for the test is 50%. The grade is given according to the following table:

<table>
<thead>
<tr>
<th>Score</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-49</td>
<td>fail (1)</td>
</tr>
<tr>
<td>50-59</td>
<td>pass (2)</td>
</tr>
<tr>
<td>60-74</td>
<td>satisfactory (3)</td>
</tr>
<tr>
<td>75-89</td>
<td>good (4)</td>
</tr>
<tr>
<td>90-100</td>
<td>excellent (5)</td>
</tr>
</tbody>
</table>

The students are allowed to retake the test once to improve their scores. Further improvement is in conformity with the EDUCATION AND EXAMINATION RULES AND REGULATIONS.

Person responsible for course: Dr. Ákos Kuki, associate professor, PhD

Lecturer: Dr. Ákos Kuki, associate professor, PhD

<table>
<thead>
<tr>
<th>Title of course:</th>
<th>Chemical Technology I.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code:</td>
<td>TTKBE1111_EN</td>
</tr>
</tbody>
</table>

| **ECTS Credit points:** | 3 |

Type of teaching, contact hours

- lecture: 2 hours/week
- practice: -
- laboratory: -

Evaluation: exam

Workload (estimated), divided into contact hours:

- lecture: 28 hours
- practice: -
- laboratory: -
- home assignment: 22 hours
- preparation for the exam: 40 hours

Total: 90 hours

Year, semester: 2nd year, 2nd semester

Its prerequisite(s): TTKBE0201_EN, TTKBE0301_EN, TTKBE0401_EN

Further courses built on it: TTKBE1112_EN, TTKBL1112_EN

Topics of course

Literature

Compulsory:

Recommended:
- Muhlyov I.: Chemical Technology I-II.

Course objective/intended learning outcomes

a) Knowledge
- He/She knows the basic principles, the planning and controlling options in technology of chemical processes and industrial tasks.
- He/She knows the chemical methods for measurements or analysis, their principles and instrumental background, and their applicabilities.

b) Abilities
- He/She is able to apply those directives that necessary to operate instruments and control processes in a safe, cost effective way as well as avoid any problems causing health issues.
- He/She is able to follow and control chemical processes and other technological steps concerning the quality management and quality control.

c) Attitude
- He/She makes effort to improve and apply the practical methods with new results and experiences.

d) Autonomy and responsibility
- Following directions he/she can work without supervision considering all quality and safety rules.
- He/She can manage work and worker resources, follow and control the instruments and measuring units.

Schedule:
1st week
Laws and description of Chemical Technology

2nd week
Purification of water, water treatment

3rd week
Water softening, hardness scales

4th week
Nitrogen industry, steam processing

5th week
Synthesis of ammonia

6th week
Nitric acid production, nitrogen containing fertilizers

7th week
Sulphur industry, sulphuric acid production

8th week
Superphosphate production
9th week
Brine electrolysis, products
10th week
Alumina industry, electrolysis of alumina
11th week
Manufacturing iron, processes in the blast furnace
12th week
Atmospheric distillation of natural oil
13th week
Vacuum distillation of atmospheric residue
14th week
Processing of natural gas

Requirements:
- for a signature
Attendance at lectures is recommended, but not compulsory.
During the semester there is one test: the end-term test in the 15th week. Students have to sit for the test
- for a grade
The exam grade is calculated by the result of end-term test.
The minimum requirement for end-term test is 50%. Based on the score of the test separately, the grade for the test is given according to the following table:

<table>
<thead>
<tr>
<th>Score</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-49</td>
<td>fail (1)</td>
</tr>
<tr>
<td>50-59</td>
<td>pass (2)</td>
</tr>
<tr>
<td>60-74</td>
<td>satisfactory (3)</td>
</tr>
<tr>
<td>75-89</td>
<td>good (4)</td>
</tr>
<tr>
<td>90-100</td>
<td>excellent (5)</td>
</tr>
</tbody>
</table>

If the score of the test is below 50, students can take a retake test in conformity with the EDUCATION AND EXAMINATION RULES AND REGULATIONS.

-an offered grade:
It may be offered for students if the grade is at least pass (2).

Person responsible for course: Dr. Lajos Nagy, associate professor, PhD

Lecturer: Dr. Lajos Nagy, associate professor, PhD

Title of course: Chemical Technology I.
Code: TTKBL1111_EN
ECTS Credit points: 4

Type of teaching, contact hours
- lecture: -
- practice: 2 hours/week
- laboratory: 2 hours/week

Evaluation: practice grade
<table>
<thead>
<tr>
<th>Workload (estimated), divided into contact hours:</th>
</tr>
</thead>
<tbody>
<tr>
<td>- lecture: -</td>
</tr>
<tr>
<td>- practice: 28 hours</td>
</tr>
<tr>
<td>- laboratory: 28 hours</td>
</tr>
<tr>
<td>- home assignment: 40 hours</td>
</tr>
<tr>
<td>- preparation for the exam: 24 hours</td>
</tr>
<tr>
<td>Total: 120 hours</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year, semester:</th>
<th>2nd year, 2nd semester</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Its prerequisite(s):</th>
<th>TTKBE0201_EN, TTKBE0301_EN, TTKBE0401_EN</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Further courses built on it:</th>
<th>TTKBE1112_EN, TTKBL1112_EN</th>
</tr>
</thead>
</table>

Topics of course

Literature

Compulsory:

Recommended:
- Muhlynov I.: Chemical Technology I-II.

Course objective/intended learning outcomes

a) Knowledge
- He/She knows the principles of instruments in chemical industries and technologies, and their operative parts, and their connections.
- He/She knows the chemical methods for measurements or analysis, their principles and instrumental background, and their applicabilities.

b) Abilities
- He/She is able to apply those directives that necessary to operate instruments and control processes in a safe, cost effective way as well as avoid any problems causing health issues.
- He/She is able to follow and control chemical processes and other technological steps concerning the quality management and quality control.

c) Attitude
- He/She makes effort to improve and apply the practical methods with new results and experiences.
d) Autonomy and responsibility

- Following directions he/she can work without supervision considering all quality and safety rules.
- He/She can manage work and worker resources, follow and control the instruments and measuring units.

Schedule:

1st week
Safety regulations

2nd week
Determination of hardness of unknown water samples

3rd week
Water softening with ion exchange resin

4th week
Sieve analysis

5th week
Distillation

6th week
Rectification, separation of ethanol-water mixture

7th week
Mixing

8th week
Determination of critical power of mixer

9th week
Sieve analysis of ground limestone

10th week
Drying, determination of moisture in unknown samples

11th week
Filtration

12th week
Sedimentation

13th week
Application of Stokes’s law for sedimenting particles

14th week
Repeating of failed practices

Requirements:

- for a signature

Attendance at lectures is recommended, but not compulsory. Participation at practice classes is compulsory. A student must attend the practice classes and may not miss more than three times during the semester. In case a student does so, the subject will not be signed and the student must repeat the course. A student can’t make up any practice with another group. Attendance at practice classes will be recorded by the practice leader. Being late is equivalent with an absence. In case of further absences, a medical certificate needs to be presented. Missed practice classes should be made up for at a later date, to be discussed with the tutor. Active participation is evaluated by the teacher in every class. If a student’s behaviour or conduct doesn’t meet the requirements of active participation, the teacher may evaluate his/her participation as an
absence because of the lack of active participation in class.
During the semester there is one test: the end-term test in the 15th week. Students have to sit for the
test. Furthermore, the students make reports about their laboratory practice results.

- for a grade
The exam grade is calculated by the results of end-term test and the laboratory reports.
The minimum requirement for end-term test is 50%. Based on the score of the test separately, the
grade for the test is given according to the following table:

<table>
<thead>
<tr>
<th>Score</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-49</td>
<td>fail (1)</td>
</tr>
<tr>
<td>50-59</td>
<td>pass (2)</td>
</tr>
<tr>
<td>60-74</td>
<td>satisfactory (3)</td>
</tr>
<tr>
<td>75-89</td>
<td>good (4)</td>
</tr>
<tr>
<td>90-100</td>
<td>excellent (5)</td>
</tr>
</tbody>
</table>

If the score of the test is below 50, students can take a retake test in conformity with the
EDUCATION AND EXAMINATION RULES AND REGULATIONS.

-an offered grade:
It may be offered for students if the grade is at least pass (2).

Person responsible for course: Dr. Lajos Nagy, associate professor, PhD

Lecturer: Dr. Lajos Nagy, associate professor, PhD

Title of course: Chemical Technology II.
Code: TTKBE1112_EN

ECTS Credit points: 3

Type of teaching, contact hours
- lecture: 2 hours/week
- practice: -
- laboratory: -

Evaluation: exam

Workload (estimated), divided into contact hours:
- lecture: 28 hours
- practice: -
- laboratory: -
- home assignment: 22 hours
- preparation for the exam: 40 hours
Total: 90 hours

Year, semester: 3rd year, 1st semester

Its prerequisite(s): TTKBE1111_EN, TTKBL1111_EN

Further courses built on it: -

Topics of course
Polyolefins. Properties of different polyethylene (PE) and polypropylene (PP) polymers.
Typical industrial reactors for the production of LDPE, HDPE (LLDPE) and PP. Uses of
polyolefins.
Biotechnology. Phases and types of the industrial fermentation. Requirements of the mixed tank reactors in the biotechnology.
Industrial production and types of solid dosage forms. Advantage, disadvantage and types of capsule dosage forms. Typical examination methods of the solid dosage forms.

Literature

Compulsory:
- H. A. Modi, Fermentation Technology (Vol: I and II), 2009
- Peter F. Stanbury, Allan Whitaker and Stephen J. Hall, Principles of Fermentation Technology, 2016

Recommended:

Course objective/intended learning outcomes

a) Knowledge
- He/She knows the basic principles, the planning and controlling options in technology of chemical processes and industrial tasks.
- He/She knows the chemical methods for measurements or analysis, their principles and instrumental background, and their applicabilities.

b) Abilities
- He/She is able to apply those directives that necessary to operate instruments and control processes in a safe, cost effective way as well as avoid any problems causing health issues.
- He/She is able to follow and control chemical processes and other technological steps concerning the quality management and quality control.

c) Attitude
- He/She makes effort to improve and apply the practical methods with new results and experiences.

d) Autonomy and responsibility
- Following directions he/she can work without supervision considering all quality and safety rules.
- He/She can manage work and worker resources, follow and control the instruments and measuring units.

Schedule:

1\(^{st}\) week
Processing and refining crude oil
2\(^{nd}\) week
Catalytic cracking
3\(^{rd}\) week
Pyrolysis in the industry
4\(^{th}\) week
Production of olefins, its products and side products
5\(^{th}\) week
Uses of ethylene and propylene
6th week
Classification and uses of polyethylene and polypropylene
7th week
Properties of the polyethylene and polypropylene polymers
8th week
Production of LDPE in the industry
9th week
Production of HDPE in the industry
10th week
Production of polypropylene in the industry
11th week
Basics of biotechnology
12th week
Industrial fermentation
13th week
Extraction of the pharmaceutically important components from the fermentation broth
14th week
Industrial production and types of solid dosage forms

Requirements:
- for a signature
Attendance at lectures is recommended, but not compulsory.
During the semester there is one test: the end-term test in the 15th week. Students have to sit for the test
- for a grade
The exam grade is calculated by the result of end-term test.
The minimum requirement for end-term test is 50%. Based on the score of the test separately, the grade for the test is given according to the following table:

<table>
<thead>
<tr>
<th>Score</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-49</td>
<td>fail (1)</td>
</tr>
<tr>
<td>50-59</td>
<td>pass (2)</td>
</tr>
<tr>
<td>60-74</td>
<td>satisfactory (3)</td>
</tr>
<tr>
<td>75-89</td>
<td>good (4)</td>
</tr>
<tr>
<td>90-100</td>
<td>excellent (5)</td>
</tr>
</tbody>
</table>

If the score of the test is below 50, students can take a retake test in conformity with the EDUCATION AND EXAMINATION RULES AND REGULATIONS.
- an offered grade:
It may be offered for students if the grade is at least pass (2).

Person responsible for course: Dr. Lajos Nagy, associate professor, PhD

Lecturer: Dr. Lajos Nagy, associate professor, PhD

Title of course: Chemical Technology II.
Code: TTKBL1112_EN
ECTS Credit points: 4
Type of teaching, contact hours
- lecture: -
- practice: 2 hours/week
- laboratory: 2 hours/week

Evaluation: practice grade

Workload (estimated), divided into contact hours:
- lecture: -
- practice: 28 hours
- laboratory: 28 hours
- home assignment: 40 hours
- preparation for the exam: 24 hours
Total: 120 hours

Year, semester: 3rd year, 1st semester

Its prerequisite(s): TTKBE1111_EN, TTKBL1111_EN

Further courses built on it: -

Topics of course
- Study the steps of fermentation processes
- Manufacturing and qualifying of biofuels
- Qualifying of lubricants
- Study of catalytic processes such as dehydrogenation
- Study of corrosion processes

Literature

Compulsory:
- Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH Verlag GmbH & Co. KGaA., 2002,
 ISBN: 9783527306732

Recommended:
- Muhlynov I.: Chemical Technology I-II.

Course objective/intended learning outcomes

a) Knowledge
- He/She knows the principles of instruments in chemical industries and technologies, and their operative parts, and their connections.
- He/She knows the chemical methods for measurements or analysis, their principles and instrumental background, and their applicabilities.

b) Abilities
- He/She is able to apply those directives that necessary to operate instruments and control processes in a safe, cost effective way as well as avoid any problems causing health issues.
- He/She is able to follow and control chemical processes and other technological steps concerning the quality management and quality control.
c) **Attitude**
- He/She makes effort to improve and apply the practical methods with new results and experiences.

d) **Autonomy and responsibility**
- Following directions he/she can work without supervision considering all quality and safety rules.
- He/She can manage work and worker resources, follow and control the instruments and measuring units.

Schedule:

1) **1st week**
- Manufacturing biodiesel

2) **2nd week**
- Qualifying of biodiesel

3) **3rd week**
- Study the corrosion of different metals

4) **4th week**
- Production of alcohol by fermentation

5) **5th week**
- Distillation of crude oil fractions

6) **6th week**
- Determination of flash point and firing point of crude oil fractions

7) **7th week**
- Bioconversion by yeast

8) **8th week**
- Dehydrogenation of isopropanol on copper catalyst

9) **9th week**
- Glyptal resin production

10) **10th week**
- Study the viscosity of paraffin and lubricant oils

11) **11th week**
- Determination of methane content in unknown gas sample

12) **12th week**
- Study the cascade reactor hydrodynamic properties

13) **13th week**
- Study the plug flow reactor hydrodynamic properties

14) **14th week**
- Repeating of failed practices

Requirements:

- for a signature

Attendance at **lectures** is recommended, but not compulsory.

Participation at **practice classes** is compulsory. A student must attend the practice classes and may not miss more than three times during the semester. In case a student does so, the subject will not be signed and the student must repeat the course. A student can’t make up any practice with another group. Attendance at practice classes will be recorded by the practice leader. Being late is equivalent with an absence. In case of further absences, a medical certificate needs to be presented.
Missed practice classes should be made up for at a later date, to be discussed with the tutor. Active participation is evaluated by the teacher in every class. If a student’s behaviour or conduct doesn’t meet the requirements of active participation, the teacher may evaluate his/her participation as an absence because of the lack of active participation in class.

During the semester there is one test: the end-term test in the 15th week. Students have to sit for the test. Furthermore, the students make reports about their laboratory practise results.

- for a grade

The exam grade is calculated by the results of end-term test and the laboratory reports. The minimum requirement for end-term test is 50%. Based on the score of the test separately, the grade for the test is given according to the following table:

<table>
<thead>
<tr>
<th>Score</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-49</td>
<td>fail (1)</td>
</tr>
<tr>
<td>50-59</td>
<td>pass (2)</td>
</tr>
<tr>
<td>60-74</td>
<td>satisfactory (3)</td>
</tr>
<tr>
<td>75-89</td>
<td>good (4)</td>
</tr>
<tr>
<td>90-100</td>
<td>excellent (5)</td>
</tr>
</tbody>
</table>

If the score of the test is below 50, students can take a retake test in conformity with the EDUCATION AND EXAMINATION RULES AND REGULATIONS.

-an offered grade:

It may be offered for students if the grade is at least pass (2).

Person responsible for course: Dr. Lajos Nagy, associate professor, PhD

Lecturer: Dr. Lajos Nagy, associate professor, PhD

Title of course: Environmental Technology
Code: TTKBE1114_EN
ECTS Credit points: 3

Type of teaching, contact hours
- lecture: 2 hours/week
- practice: -
- laboratory: -

Evaluation: exam

Workload (estimated), divided into contact hours:
- lecture: 28 hours
- practice: -
- laboratory: -
- home assignment: 32 hours
- preparation for the exam: 30 hours
Total: 90 hours

Year, semester: 3rd year, 2nd semester

Its prerequisite(s): TTKBE1111_EN

Further courses built on it: -

Topics of course

Literature

Compulsory:

Recommended:

Course objective/intended learning outcomes

a) Knowledge
- He/She knows the basic principles, the planning and controlling options in technology of chemical processes and industrial tasks.
- He/She knows the chemistry and chemical technology related economical, management environmental safety, quality assurance (QC/QA), informatics and intellectual property rules and laws.

b) Abilities
- He/She is able to treat new or unknown system based on the previous studies and experiences, learn and install new technologies and recognize mechanisms related to human health.
- He/She is able to collect and organize, understand information about the health prevention, keeping track on new results, and apply them to make cost and environmentally effective, healthy working areas.

c) Attitude
- He/She is open to accept environmentally efficient technologies, and for the application of new, innovative and advanced methods in economy.
- During everyday work and installation of new technologies he/she always concerned about sustainable development.

d) Autonomy and responsibility
- He/She tends to establish new solutions and technologies.
- Following directions he/she can work without supervision considering all quality and safety rules.

Schedule:

1st week
Relationship between the humanity and the nature. Sustainable development in the industry.

2nd week
Types of industrial wastes, reduction and treatment.

3rd week
Additive and integrated environmental protection strategies. Closed-loop technologies.

4th week
Technologies and methods for the treatment of gaseous wastes.

5th week
Technologies and methods for the treatment of liquid wastes.

6th week
Technologies and methods for the treatment of solid wastes.

7th week
Air pollutants, their effects, prevention, treatment options.

8th week
Water pollutant chemical substances, their effects on the hydrosphere, prevention, treatment options.

9th week
Organic substances as water pollutants, their analytical problems, effects on the living organisms.

10th week
Physical and chemical methods of wastewater treatment.

11th week

12th week
Soil pollution, treatment options of different pollutants.

13th week
Renewable energy sources: solar, wind, water, geothermal.

14th week

Requirements:
- for a signature

Attendance at lectures is recommended, but not compulsory. Active participation is rewarded by the teacher in every class.

Students have to submit an essay about a given topic as scheduled minimum on a sufficient level.

During the semester there is one end-term test in the 15th week for an offered grade (optional). Students have to sit for the tests.

- for a grade

The course ends in an examination. Based on the average of the grades of the essay and the examination, the exam grade is calculated as an average of them:

The minimum requirement for the end-term test and the examination respectively is 50%. Based on the score of the test, the grade for the test and the examination is given according to the following table:

<table>
<thead>
<tr>
<th>Score</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-49</td>
<td>fail (1)</td>
</tr>
<tr>
<td>50-61</td>
<td>pass (2)</td>
</tr>
<tr>
<td>62-74</td>
<td>satisfactory (3)</td>
</tr>
<tr>
<td>75-87</td>
<td>good (4)</td>
</tr>
<tr>
<td>88-100</td>
<td>excellent (5)</td>
</tr>
</tbody>
</table>

If the score the test is below 50, students can take a retake test in conformity with the Education and Examination Rules and Regulations.
-an offered grade:
it may be offered for students if the grade of both the essay and the end-term test is at least satisfactory (3). The offered grade is the average of them.

Person responsible for course: Dr. Dávid Rácz, assistant professor, PhD

Lecturer: Dr. Dávid Rácz, assistant professor, PhD

| Title of course: Environmental technology | ECTS Credit points: 2 |
| Code: TTKBL1114_EN | |

| Type of teaching, contact hours |
| - lecture: - |
| - practice: - |
| - laboratory: 2 hours/week |

Evaluation: practice grade

Workload (estimated), divided into contact hours:
- lecture: -
- practice: -
- laboratory: 28 hours
- preparation for the tests: 30 hours
Total: 58 hours

Year, semester: 3rd year, 2nd semester

Its prerequisite(s): TTKBE1114_EN (parallel registration)

Further courses built on it: -

Topics of course

Literature

Recommended:
1. Syllabus provided by the Department of Applied Chemistry

Course objective/intended learning outcomes

a) Knowledge
- He/She knows the basic principles, the planning and controlling options in technology of chemical processes and industrial tasks.
- He/She knows the chemistry and chemical technology related economical, management environmental safety, quality assurance (QC/QA), informatics and intellectual property rules and laws.

b) Abilities
- He/She is able to treat new or unknown system based on the previous studies and experiences, learn and install new technologies and recognize mechanisms related to human health.
- He/She is able to collect and organize, understand information about the health prevention, keeping track on new results, and apply them to make cost and environmentally effective, healthy working areas.

c) Attitude
- He/She is open to accept environmentally efficient technologies, and for the application of new, innovative and advanced methods in economy.
- During everyday work and installation of new technologies he/she always concerned about sustainable development.

d) Autonomy and responsibility
- He/She tends to establish new solutions and technologies.
- Following directions he/she can work without supervision considering all quality and safety rules.

Schedule:
8th week
Identification of plastic wastes using simple physical and chemical methods.
9th week
Desalination of waste water on ion exchange column.
10th week
Removal of floating particles from waste water by sedimentation.
11th week
Determination of the solvent content of waste water by GC method.
12th week
Adsorption of air pollutant organic solvent vapor on activated carbon.
13th week
Measurement of plasticizer content (qualitative and quantitative) from waste materials.
14th week
Test writing.

Requirements:
The laboratory practices will be done in blocks (4 hours a week, 7 weeks). Attendance at laboratory practices are compulsory.
All measuring groups will prepare a laboratory notebook (laboratory record) after every practice. The practice ends with a test for a partial grade. The test will cover the theoretical and the practical part of the laboratory practices. (The test is also compulsory!) The minimum requirement for the test is 50%. The grade is given according to the following table:

<table>
<thead>
<tr>
<th>Score</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-49</td>
<td>fail (1)</td>
</tr>
<tr>
<td>Grade Range</td>
<td>Description</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td>50-59</td>
<td>pass (2)</td>
</tr>
<tr>
<td>60-79</td>
<td>satisfactory (3)</td>
</tr>
<tr>
<td>80-89</td>
<td>good (4)</td>
</tr>
<tr>
<td>90-100</td>
<td>excellent (5)</td>
</tr>
</tbody>
</table>

The practice grade will be calculated as a weighted average by the following way: 60% of the test result, 40% of the laboratory notebook.

Person responsible for course: Dr. Dávid Rácz, assistant professor, PhD

Lecturer: Dr. Dávid Rácz, assistant professor, PhD

Title of course: Pilot Plant practice
Code: TKBL1115_EN
ECTS Credit points: 5

Type of teaching, contact hours
- lecture:
- practice: 1 hours/week
- laboratory: 4- hours/week

Evaluation: exam

Workload (estimated), divided into contact hours:
- lecture:
- practice: 14 hours
- laboratory: 56 hours-
- home assignment: 80 hours
- preparation for the exam:
Total: 150 hours

Year, semester: 3rd year, 2nd semester

Its prerequisite(s): Chemical technology I. (TKBE1111)

Further courses built on it: -

Topics of course
During the laboratory practice the students can learn the manual and computerized operation of pilot plant sized unit operations. They will record and calculate mass and energy balances for different processes such as: evaporations, absorption, grinding-size distribution, liquid-liquid extraction, distillation, fluidization and membrane separation.

Literature
 Ullmann's Encyclopedia of Industrial Chemistry, 5th ed., Weinheim, Federal Republic of
Course objective/intended learning outcomes

a) Knowledge
- He/She knows the chemical methods for measurements or analysis, their principles and instrumental background, and their applicabilities

b) Abilities
- He/She understands and able to describe the elements of industrial and technological units, their operations including the connectivity options.
- He/She is able to follow and control chemical processes and other technological steps concerning the quality management and quality control.
- He/She is able to recognize the possible error symptoms, run diagnostic routines and offer solution based on the results.

c) Attitude
- He/She makes effort to keep his/her chemical engineering knowledge updated related to his/her professional goals.
- He/She makes effort to improve and apply the practical methods with new results and experiences.

d) Autonomy and responsibility
- Following directions he/she can work without supervision considering all quality and safety rules.
- He/She can manage work and worker resources, follow and control the instruments and measuring units.
- He/She makes decisions according to his/her positions, makes suggestions to qualify his/her colleagues involving their promotions.

Schedule:

1st week
Safety instructions. The basic requirements of laboratory work.

2nd week
Fluidization

3rd week
Grinding and sieve analysis. Comparison of grinding efficiencies.

4th week
Batch distillation.

5th week
PLC controlled reactor I.

6th week
PLC controlled reactor I.
7th week
Absorption.
8th week
Liquid-liquid extraction.
9th week
Heat exchange.
10th week
Falling film evaporator
11th week
Membrane separation. RO.
12th week
Vacuum evaporation.
13th week
Gas separation
14th week
Test

Requirements:
- for a signature
Participation at practice classes is compulsory. A student must attend the practice classes and may not miss more than three times during the semester. In case a student does so, the subject will not be signed and the student must repeat the course. A student can’t make up any practice with another group. Attendance at practice classes will be recorded by the practice leader. Being late is equivalent with an absence. In case of further absences, a medical certificate needs to be presented. Missed practice classes should be made up for at a later date, to be discussed with the tutor.

- for a grade
The course is graded based on lab reports created individually. The reports should be prepared after the practices.

Person responsible for course: Dr. Miklós Nagy, associate professor, PhD

Lecturer: Dr. Miklós Nagy, associate professor, PhD

<table>
<thead>
<tr>
<th>Title of course: Safety</th>
<th>ECTS Credit points: 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code: TTKBE0711_EN</td>
<td></td>
</tr>
</tbody>
</table>

Type of teaching, contact hours
- lecture: 2 hours/week
- practice: -
- laboratory: -

Evaluation: exam

Workload (estimated), divided into contact hours:
- lecture: 28 hours
- practice: -
- laboratory: -
- preparation for the tests: 60 hours
Total: 88 hours

Year, semester: 4th year, 1st semester

Its prerequisite(s): TTKBE1112_EN

Further courses built on it: -

Topics of course

- General safety rules.
- Describing major accidents and causes.
- Poisoning, noise.
- Inerting of chemical vessels.
- Hazards of electricity (Static electricity, Direct current and alternating current)
- Dangers of chemical reactions.
- Safety valves, regulation of pressure, solutions in case of emergency.

Literature

Recommended:

Course objective/intended learning outcomes

a) Knowledge

- He/She knows the basic principles, the planning and controlling safety in technology of chemical processes and industrial tasks.
- He/She knows the conditions for safe working.
- He/She knows the principles of using certain protective devices.
- He/She knows the technical solutions that can reduce the likelihood of accidents.

b) Abilities

- He/She is able to apply those directives that necessary to operate instruments and control processes in a safe, cost effective way as well as avoid any problems causing health issues.
- He/She can read, interpret and work on basic safety issues and knows how to use his/her knowledge on this area.
- He/She is able to communicate professionally on safety questions.
- He/She is able to expand / improve its accident prevention skills in new tasks.

c) Attitude

- He/She is open to accept environmentally efficient and safe technologies, and for the application of new, innovative and advanced methods in economy.
- In each technological or laboratory steps he/she is always concerned to the current rules/laws of health prevention, safety and environmental questions.
- He/She is open to gain new knowledge in the subject.
- He/She also asks his colleagues to comply with the rules of accident protection and safety and shows an example of his own work.

d) Autonomy and responsibility

- He/She can evaluate the work of other persons and make decisions based on the outcome.
- He/She tends to establish new solutions and technologies.
- **He/She with a little** professional guidance is able to carry out smaller sub-tasks independently.
- He/She is able to carry out safety training and, in simpler cases he/she is able to evaluate realistically potential hazards independently.

Schedule:

1st week
General and basic security rules. Definition of accident, near-miss (quasi-accident) and first aid. Can we learn from accidents that have not happened?

2nd week
Accident statistics, industry comparison. Conclusions from the figures.

3rd week
Some major accidents are described, for example: in Bhopal, India (1984), Seveso, Italy (1976), Red Sludge (Red Mud) Disaster, Kolontar, Hungary (2010). Discussion of the possible causes of accidents.

4th week

5th week
Definition and classification of noise. Effect of the frequency and power of the noise. Dangers and diseases caused by noise. Work in a noisy workplace.

6th week

7th week
Dangers of static electricity. Prevention of the formation of static electricity. The dust explosion. Electrical hazards. The role of insulation, earthing, residual current device (fi-relay) and fuse in the prevention of accidents

8th week
Dangers of chemical reaction. Run-away reaction and possible causes. Exothermic and/or gas producing reactions. Pyrophoric, peroxide-forming, reacting with water, highly oxidizing, self-reactive, impact-sensitive, heat-decomposing materials and their dangers.

9th week
Types of safety valves and their operation. Multiple protection. Comparison of safety valves, advantages and disadvantages.

10th week

11th week

12th week
Watching educational videos on safety. Learn the GHS pictograms and safety signs.

13th week
Consultation.

14th week
Test for a recommended grade.
Requirements:
Attendance at lectures is recommended, but not compulsory.
The course ends with test for a recommended grade. (This test is not compulsory!) The minimum requirement for the test is 50%. The grade is given according to the following table:

<table>
<thead>
<tr>
<th>Score</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-49</td>
<td>fail (1)</td>
</tr>
<tr>
<td>50-59</td>
<td>pass (2)</td>
</tr>
<tr>
<td>60-80</td>
<td>satisfactory (3)</td>
</tr>
<tr>
<td>81-90</td>
<td>good (4)</td>
</tr>
<tr>
<td>91-100</td>
<td>excellent (5)</td>
</tr>
</tbody>
</table>

The students can retake the test in conformity with the EDUCATION AND EXAMINATION RULES AND REGULATIONS.

Person responsible for course: Dr. György Deák, associate professor, PhD

Lecturer: Dr. György Deák, associate professor, PhD

Title of course: Basics of Petrochemistry
Code: TTKBE1113_EN

ECTS Credit points: 3

Type of teaching, contact hours
- lecture: 2 hours/week
- practice: -
- laboratory: -

Evaluation: exam

Workload (estimated), divided into contact hours:
- lecture: 28 hours
- practice: -
- laboratory: -
- preparation for the tests: 65 hours
Total: 93 hours

Year, semester: 3rd year, 1st semester

Its prerequisite(s): TTKBE1111_EN

Further courses built on it: -

Topics of course
- Possible application of distilled fractions.
- Processes of fuel fractions.
- Basic thermal and catalytic cracking procedures.
- Role of isomerization and oligomerization in the petroleum industry.
- Chemicals as product of crude oil.
- Main technology of oil based monomers.
- Production of biofuels.

Literature
Recommended:

Course objective/intended learning outcomes

a) Knowledge
He/She knows the basic principles, the planning and controlling options in technology of chemical processes and industrial tasks.

b) Abilities
He/She is able to follow and control chemical processes and other technological steps concerning the quality management and quality control.
He/She is able to recognize the possible error symptoms, run diagnostic routines and offer solution based on the results.

c) Attitude
He/She makes effort to improve and apply the practical methods with new results and experiences.

d) Autonomy and responsibility
He/She can evaluate the work of other persons and make decisions based on the outcome.

Schedule:

1st week
Topic of petrochemistry, classification of procedures, first step of oil process

2nd week
Thermal cracking processes, visbreaking and delayed cooking.

3rd week
Basics of catalytic cracking, role of these processes in the petroleum refining.

4th week
Fluid catalytic cracking and hydrocracking.

5th week
Catalytic reforming, aims and main reactions.

6th week
Aim of isomerization, classification based on the feeds.

7th week
Technology of alkylation and oligomerization. Production of ethylbenzene.

8th week
Production, separation and purification of benzene, toluene and xylene (BTX fraction) and their main products.

9th week
Aim of steam cracking, main reactions and possible feeds.

10th week
The main part of the steam cracker furnaces. comparison of different technologies and the applied furnaces. Procedure of the product.

11th week
Second generation monomers: vinyl chloride, ethylene- and propylene oxide. Production of the
monomers and product of ethylene, propylene and butadiene.

12th week
Hydrogen production, aim of steam reforming. Application of synthesis gas.

13th week
Production of biodiesel, classification of procedures based on the catalyst.

14th week
Production of bioethanol, possible. Possible sources and pretreatment of the feeds. Production of ethyl tert-butyl ether.

Requirements:
Attendance at lectures is recommended, but not compulsory.
The course ends with exams at the exam periods. The minimum requirement for the test is 50%. The grade is given according to the following table:

<table>
<thead>
<tr>
<th>Score</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-49</td>
<td>fail (1)</td>
</tr>
<tr>
<td>50-64</td>
<td>pass (2)</td>
</tr>
<tr>
<td>65-74</td>
<td>satisfactory (3)</td>
</tr>
<tr>
<td>75-84</td>
<td>good (4)</td>
</tr>
<tr>
<td>85-100</td>
<td>excellent (5)</td>
</tr>
</tbody>
</table>

The students can retake the test in conformity with the EDUCATION AND EXAMINATION RULES AND REGULATIONS.

Person responsible for course: Dr. Lajos Nagy, associate professor, PhD

Lecturer: Dr. Tibor Nagy, assistant professor, PhD

<table>
<thead>
<tr>
<th>Title of course: Waste Management</th>
<th>ECTS Credit points: 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code: TTKBE1116_EN</td>
<td></td>
</tr>
</tbody>
</table>

Type of teaching, contact hours
- lecture: 2 hours/week
- practice: -
- laboratory: -

Evaluation: exam

Workload (estimated), divided into contact hours:
- lecture: 28 hours
- practice: -
- laboratory: -
- home assignment: 32 hours
- preparation for the exam: 30 hours

Total: 90 hours

Year, semester: 3rd year, 2nd semester

Its prerequisite(s): TTKBE1111_EN

Further courses built on it: -
Topics of course

Literature

Compulsory:

Recommended:

Course objective/intended learning outcomes

a) Knowledge
- He/She knows the basic principles, the planning and controlling options in technology of chemical processes and industrial tasks.
- He/She knows the chemical methods for measurements or analysis, their principles and instrumental background, and their applicabilities.

b) Abilities
- He/She is able to apply those directives that necessary to operate instruments and control processes in a safe, cost effective way as well as avoid any problems causing health issues.
- He/She is able to recognize the possible error symptoms, run diagnostic routines and offer solution based on the results.

c) Attitude
- During his/her work he/she committed to apply the quality concerns including the new assurances.
- During everyday work and installation of new technologies he/she always concerned about sustainable development.

d) Autonomy and responsibility
- Following directions he/she can work without supervision considering all quality and safety rules.
- He/She tends to establish new solutions and technologies.

Schedule:

1st week
Basic definitions of waste management. Classification of wastes.
<table>
<thead>
<tr>
<th>Week</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>2nd</td>
<td>Waste management strategies, waste reduction.</td>
</tr>
<tr>
<td>3rd</td>
<td>Landfilling – cell method</td>
</tr>
<tr>
<td>4th</td>
<td>Landfilling – leachate control and gas collection</td>
</tr>
<tr>
<td>5th</td>
<td>Landfilling – site restoration</td>
</tr>
<tr>
<td>6th</td>
<td>Incineration – conventional incinerators</td>
</tr>
<tr>
<td>7th</td>
<td>Incineration – rotary kiln, fluidised bed incineration</td>
</tr>
<tr>
<td>8th</td>
<td>Incineration – Emissions abatement technologies</td>
</tr>
<tr>
<td>9th</td>
<td>Advanced thermal processing technologies – gasification and pyrolysis</td>
</tr>
<tr>
<td>10th</td>
<td>Anaerobic digestion</td>
</tr>
<tr>
<td>11th</td>
<td>Composting</td>
</tr>
<tr>
<td>12th</td>
<td>Materials recycling – MRF, SRF</td>
</tr>
<tr>
<td>13th</td>
<td>Materials recycling – MBT</td>
</tr>
<tr>
<td>14th</td>
<td>Integrated solid waste management and waste strategies</td>
</tr>
</tbody>
</table>

Requirements:
- **for a signature**
 Attendance at lectures is recommended, but not compulsory. Active participation is rewarded by the teacher in every class.
 Students have to submit an essay about a given topic as scheduled minimum on a sufficient level. During the semester there is one end-term test in the 15th week for an offered grade (optional). Students have to sit for the tests.
- **for a grade**
 The course ends in an examination. Based on the average of the grades of the essay and the examination, the exam grade is calculated as an average of them:
 The minimum requirement for the end-term test and the examination respectively is 50%. Based on the score of the test, the grade for the test and the examination is given according to the following table:

<table>
<thead>
<tr>
<th>Score</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-49</td>
<td>fail (1)</td>
</tr>
<tr>
<td>50-61</td>
<td>pass (2)</td>
</tr>
<tr>
<td>62-74</td>
<td>satisfactory (3)</td>
</tr>
<tr>
<td>75-87</td>
<td>good (4)</td>
</tr>
<tr>
<td>88-100</td>
<td>excellent (5)</td>
</tr>
</tbody>
</table>

If the score the test is below 50, students can take a retake test in conformity with the Education and Examination Rules and Regulations.
-an offered grade:
it may be offered for students if the grade of both the essay and the end-term test is at least satisfactory (3). The offered grade is the average of them.

Person responsible for course: Dr. Dávid Rácz, assistant professor, PhD

Lecturer: Dr. Dávid Rácz, assistant professor, PhD

| **Title of course:** Spectroscopic methods I. | **ECTS Credit points:** 3 |
| **Code:** TTKBE0503_EN |

<table>
<thead>
<tr>
<th>Type of teaching, contact hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>- lecture: 2 hours/week</td>
</tr>
</tbody>
</table>

| **Evaluation:** exam |

<table>
<thead>
<tr>
<th>Workload (estimated), divided into contact hours:</th>
</tr>
</thead>
<tbody>
<tr>
<td>- lecture: 28 hours</td>
</tr>
<tr>
<td>- home assignment: 22 hours</td>
</tr>
<tr>
<td>- preparation for the exam: 40 hours</td>
</tr>
</tbody>
</table>

Total: 90 hours:

| **Year, semester:** 3rd year, 2nd semester |

| **Its prerequisite(s):** TTKBE0302_EN, TTFBE2113_EN |

| **Further courses built on it:** TTKBL0504_EN, TTKBL0004_EN |

| **Topics of course** |

Modern chemical analytics is based on different branches of spectroscopy. The series of lecture are based on the topics of Nuclear Magnetic Resonance, Mass Spectrometry (MS), Infrared Spectroscopy (IR) and Ultraviolet/Visible Spectroscopy (UV).

It reviews: the fundamental relations of the angular momentum and nuclear magnetism, the connections between magnetic field and nuclear magnetisation, the selection rule for NMR and the resonance condition. After that it deals with connections between electron density shielding and chemical shifts; scalar spin-spin coupling, Karplus relationship, first order spectrum (week coupling), first order rules, second-order spectrum ("strong" coupling), 13C NMR. In addition, theory and practice of optical and mass-spectroscopy is covered.

<table>
<thead>
<tr>
<th>Literature:</th>
</tr>
</thead>
</table>

5. F.W.McLafferty: „Interpretation of mass spectra”, W.A.Benjamin, INC, New York, 1967

| **Course objective/intended learning outcomes** |
a) Knowledge: - He/She knows the basic qualitative and quantitative chemical principles, and the methods based on it. He/She knows the main models and theories of chemical bonds and molecular structure based on scientific findings. Understanding the basic principles of pulse Fourier NMR method. Knows the representative 1H and 13C chemical shifts of functional groups, has information about the use of homo and heteronuclear spin-spin couplings and NOE-s.

b) Abilities: - He/She is able to use the previously obtained knowledge on the field of natural and anthropogenic studies to solve practical problems. Able to analyse first order high resolution 1H NMR spectra, active knowledge on expected chemical shift ranges both for 1H and 13C spectra. Able to combine and evaluate the results of NMR, MS and IR spectra simultaneously.

c) Attitude:
- He/She is ready to discuss problems on the field of chemistry and other science with professionals.
- He/She is open toward scientific and other postgradual education.
- He/She is committed learn or get insights into new competence or ideology.
- During his/her work he/she committed to apply the quality concerns including the new assurances.

Willing to cope with the structure elucidation problem of unknown compounds.

d) Autonomy and responsibility: - He/She can make reasonable evaluations about his/her own work comparing to others to the same field. Capable to predict or interpret NMR, MS and IR spectra of compounds. Critically evaluates spectra, recognizes possible contradictions and takes responsibility for final decision on the anticipated chemical structure.

Schedule:

1st week Basics of NMR: Magnetic dipoles in external B₀ field, nuclear Zeeman effect, selection rules, transition frequency, populations, Boltzmann distribution, bulk magnetisation, vector model. B₁ radiofrequency excitation, CW and pulse-Fourier spectrometer schemes. NMR active nuclei. Fields of applications: solid-state NMR, MRI, tomography in material science, relaxation for drug quality control and oil research.

3rd week Analysis of high resolution NMR spectra 1. : 1H spin system labelling rules based on molecular structure. First order analysis of 1H NMR spectra. Strong couplings and their impact. Integration of 1H NMR spectra, rules for quantitative NMR.

4th week Analysis of high resolution NMR spectra 2. : Interpretation of homo-and heteronuclear NOE data. Basic types of 13C NMR spectra: broadband 1H-decoupled, j-modulated attached proton test, gated decoupling for heteronuclear couplings, and inverse-gated decoupling for quantitative 13C NMR.

6th week Practicing organic molecule structure elucidation by NMR 2.: 13C NMR: Signal multiplicities in undecoupled spectra. Predicting the number of carbons from decoupled spectra. The carbon NMR chemical shift correlation chart. Assigning the 13C NMR spectra of aromatics, alcohols, ketones and aliphatics. Interpreting signal intensities in usual, decoupled and in "quantitative" 13C NMR.

7th week NMR written TEST

8th week Electromagnetic radiation, ranges and energy of electromagnetic radiation. Conditions for generating infrared spectra. Rotational and vibrational spectra. Characteristic group frequencies, characteristic vibrational frequencies. Overtone frequencies. Typical ranges of chemical vibrations and their dependence on binding energy and binding stability. 9th week IR spectra of alkanes, alkenes, alkines and aromatic compounds. Alcohol identification, the effect of hydrogen bond on the IR spectrum of alcohols. Intra- and intermolecular effects affecting the C-O vibration of the carbonyl group. IR spectra of carboxylic acids and carboxylic acid derivatives.

11th week Conformation and geometry of polyene systems. Effect of solvent polarity on UV spectra. The basic concepts of mass spectrometry. The main ionization techniques of organic mass spectrometry. Ionization of molecules. 12th week General fragmentation and fragmentation of the molecular ion: mass spectrum. The advantages and disadvantages of ionization methods. Main parts of mass spectrometer. Optimal technical requirements for sample input aspects and multicomponent samples. Ion sources, EI ion source, CI ion source. 13th week Molecular ionization: ESI ion source, APCI ion source. The types of Mass analyzers. The Resolution. Signal Processing: detectors. 14th week Basic concepts of organic mass spectrometry, mol peak, molecular ion. The nitrogen rule, natural isotopes. General aspects of the interpretation of mass spectra. Main fragmentation processes: α-, benzyl, allyl cleavage. The McLafferty rearrangement. Generic mass spectrometry of different class of organic compounds

15th week MS & IR written TEST

Requirements:
- for a signature
Attendance at lectures is highly recommended (not compulsory) since interactive evaluation of test problems are parts of the lectures. Students have to submit all the two designing tasks as scheduled minimum on a sufficient level. During the semester there are two tests: the mid-term test in the 7th week and the end-term test in the 14th week. Students have to sit for the tests
- for a grade
The course ends in an examination. Based on the average of the grades of the designing tasks and the examination, the exam grade is calculated as an average of them:
the average grade of the two designing tasks
- or the result of the oral examination

The minimum requirement for the mid-term and end-term tests and the examination respectively is 60%. Based on the score of the tests separately, the grade for the tests and the examination is given according to the following table:

<table>
<thead>
<tr>
<th>Score</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-59</td>
<td>fail (1)</td>
</tr>
<tr>
<td>60-69</td>
<td>pass (2)</td>
</tr>
<tr>
<td>70-79</td>
<td>satisfactory (3)</td>
</tr>
<tr>
<td>80-89</td>
<td>good (4)</td>
</tr>
<tr>
<td>90-100</td>
<td>excellent (5)</td>
</tr>
</tbody>
</table>

If the score of any test is below 60, students can take a retake test in conformity with the EDUCATION AND EXAMINATION RULES AND REGULATIONS.

-an offered grade:

It may be offered for students if the average grade of the two designing tasks is at least satisfactory (3) and the average of the mid-term and end-term tests is at least satisfactory (3). The offered grade is the average of them.

Person responsible for course: Dr. Gyula Batta, professor, PhD

Lecturers: Dr. Gyula Batta, professor, PhD & Dr. Attila Kiss PhD, associate professor

| Title of course: Quality Management | ECTS Credit points: 3 |
| Code: TTBEBVM-KT6-EN | |

Type of teaching, contact hours
- lecture: 2 hours/week
- practice: -
- laboratory: -

Evaluation: exam

Workload (estimated), divided into contact hours:
- lecture: 28 hours
- practice: -
- laboratory: -
- home assignment: -
- preparation for the exam: 62 hours
Total: 90 hours

Year, semester: 3rd year, 1st semester

Its prerequisite(s): TTBEBVM-KT4_EN

Further courses built on it: -

Topics of course

The series of lectures are based on the topics of Quality Management. This course introduces the participants into the philosophy, the theories and the basic calculations of quality management. Lectures give opportunity to discuss the topics and to get practice in basics techniques of measuring
quality, quality improvement, statistical process control, quality management, international standards of quality.

Literature

Compulsory:

Recommended:

Course objective/intended learning outcomes

a) Knowledge
- He/She knows the chemistry and chemical technology related economical, management environmental safety, quality assurance (QC/QA), informatics and intellectual property rules and laws.

b) Abilities
- He/She is able to follow and control chemical processes and other technological steps concerning the quality management and quality control.

c) Attitude
- During his/her work he/she committed to apply the quality concerns including the new assurances

d) Autonomy and responsibility
- He/She makes decisions according to his/her positions, makes suggestions to qualify his/her colleagues involving their promotions.
- He/she confesses and represents the value system of the engineering profession with responsibility. He/she is open to critical remarks which are professionally well-founded.

Schedule:

1\(^{st}\) week: Basic issues of quality: quality of products, KANO-model

2\(^{nd}\) week : Basic issues of quality: quality of services, SERVQUAL model

3\(^{rd}\) week: Product Design – Paired comparison

4\(^{th}\) week: Quality theories- Taguchi method (Design of Experiments)

5\(^{th}\) week: Tools of quality - 7 basic tools of quality (Ishikawa)

6\(^{th}\) week: Statistical Process Control I – Charts for Variables

7\(^{th}\) week: Statistical Process Control II – Charts for Attributes
8th week: Process Capability

9th week: Quality management: International Quality standards (ISO, TQM, EFQM model)

10th week: LEAN Manufacturing and Quality

11th week: Six Sigma System

12th week: Product Design – Quality Function Deployment

13th week: Risk Evaluation: Failure Mode and Effects Analysis

14th week: Practicing Case Studies

Requirements:
- for a signature
- attendance at lectures is recommended, but not compulsory.
- for a grade
The course ends in an examination. The grade for the examination is given according to the following table:

<table>
<thead>
<tr>
<th>Score</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-59</td>
<td>fail (1)</td>
</tr>
<tr>
<td>60-69</td>
<td>pass (2)</td>
</tr>
<tr>
<td>70-79</td>
<td>satisfactory (3)</td>
</tr>
<tr>
<td>80-89</td>
<td>good (4)</td>
</tr>
<tr>
<td>90-100</td>
<td>excellent (5)</td>
</tr>
</tbody>
</table>

If the score of any test is below 60, students can take a retake test in conformity with the EDUCATION AND EXAMINATION RULES AND REGULATIONS.

Person responsible for course: Dr. Agnes Kotsis, assistant professor, PhD

Lecturer: Dr. Agnes Kotsis, assistant professor, PhD

Title of course: Design of Experiments
Code: TTKBE0617_EN

ECTS Credit points: 3

Type of teaching, contact hours
- lecture: 2 hours/week
- practice: -
- laboratory: -

Evaluation: term grade

Workload (estimated), divided into contact hours:
- lecture: 28 hours
- practice: -
- laboratory: -
- preparation for the tests: 60 hours
Total: 88 hours

Year, semester: 3rd year, 2nd semester

Its prerequisite(s): TTKBE0403_EN

Further courses built on it: -

Topics of course

The basic data processing methods in the field of engineering. Introduction to statistics for engineers: distributions, statistical estimation, statistical hypothesis tests. Regression analysis, analysis of variance (ANOVA), factorial experiment design.

Literature

Recommended:

Course objective/intended learning outcomes

a) Knowledge
- He/She knows the basic principles, the planning and controlling options in technology of chemical processes and industrial tasks.
- He/She has a knowledge on the data mining, literature browsing and the ethical concerns of chemical engineering.

b) Abilities
- He/She capable to apply the learned methods, models and plannings of chemical technology and chemical processes through calculations.

c) Attitude
- He/She is open to accept environmentally efficient technologies, and for the application of new, innovative and advanced methods in economy.

d) Autonomy and responsibility
- He/She tends to establish new solutions and technologies.

Schedule:

1st week
Uncertain phenomena, population, sample, probability variable, probability density function, cumulative distribution function.

2nd week
Expected value, sample mean, variance, standard deviation.

3rd week
Gaussian distribution, z-distribution.

4th week
T-distribution, f-distribution.

5th week
Estimations, confidence intervals.

6th week
Hypothesis tests.

7th week
T-test

8th week
Two sample t-test.

9th week
Paired t-test.

10th week
Correlation analysis.

11th week
Regression analysis.

12th week
Analysis of variance (ANOVA).

13th week
Factorial experiment design. 2^p plans.

14th week
Factorial experiment design, significance of the estimated model parameters.

Requirements:
Attendance at lectures is recommended, but not compulsory.
The course ends with test for the term grade. The minimum requirement for the test is 50%. The grade is given according to the following table:

<table>
<thead>
<tr>
<th>Score</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-49</td>
<td>fail (1)</td>
</tr>
<tr>
<td>50-59</td>
<td>pass (2)</td>
</tr>
<tr>
<td>60-74</td>
<td>satisfactory (3)</td>
</tr>
<tr>
<td>75-89</td>
<td>good (4)</td>
</tr>
<tr>
<td>90-100</td>
<td>excellent (5)</td>
</tr>
</tbody>
</table>

The students can retake the test in conformity with the EDUCATION AND EXAMINATION RULES AND REGULATIONS.

Person responsible for course: Dr. Ákos Kuki, associate professor, PhD

Lecturer: Dr. Ákos Kuki, associate professor, PhD

Title of course: BSc thesis I.
Code: TTKBG2011_EN

ECTS Credit points: 2

Type of teaching, contact hours
- lecture: -
- practice: -
- laboratory: 2 hours/week

Evaluation: practice grade

Workload (estimated), divided into contact hours:
- lecture: -
- practice: -
- laboratory: 28 hours
- home assignment: 32 hours
- preparation for the exam: -
Total: 60 hours

Year, semester: 3rd year, 2nd semester

Its prerequisite(s): Completion of 140 credits

Further courses built on it: TTKBG2012_EN

Topics of course

The aim of the course is to solve a problem that can be approached by chemical or chemical engineering methods. The student is expected to get the following competences: planning, time management, handling of information (acquiring and analysing them from various sources, such as traditional library, electronic databases, search engines), ability to work alone or in a team, practical application of the acquired knowledge, communication in native language both in oral and written ways. The student gets deeper knowledge in methods and procedures of a particular field of chemistry or chemical industry. With the help of the supervisor he/she starts to plan and execute the literature search and experimental work related to the topic of the thesis.

Literature

Provided by the supervisor.

Course objective/intended learning outcomes

a) Knowledge
- He/She has a mathematical and scientific background to understand processes in chemical and chemistry related industries.
- He/She knows the properties of the most important chemicals, their productions and applications.
- He/She knows has a knowledge on the data mining, literature browsing and the ethical concerns of chemical engineering.

b) Abilities
- He/She capable to apply the learned methods, models and plannings of chemical technology and chemical processes through calculations.
- He/She is able to recognize the possible error symptoms, run diagnostic routines and offer solution based on the results.
- He/She is able to use documentation (either online or printed) related to the current field, including the scientific literature both on his/her native language and English.

c) Attitude
- He/She makes effort to improve and apply the practical methods with new results and experiences.
- He/She can collaborate with other people and discuss their opinions in problem solving processes before making new decisions.

d) Autonomy and responsibility
- He/She takes part in scientific project(s) under supervision.
- Following directions he/she can work without supervision considering all quality and safety rules.
Schedule:
The student works by following the instructions of the supervisor.

Requirements:
- for a signature
The student have to take part in the research project coordinated by the supervisor.
- for a grade
The work of the student is evaluated by the supervisor considering many aspects, e.g. the quality of the work in the laboratory or industry, the ability to work alone or in a team, the competence for process the literature about the given topic, the problem solving ability and the presentation of the results.

Person responsible for course: Prof. Dr. Sándor Kéki, Full Professor, responsible for the Chemical Engineering BSc

Lecturer: supervisors are staff members of the Institute of Chemistry, UD or specialists at the cooperating industrial partners (e.g. MOL Petrochemistry, TEVA Pharmaceutical, BorsodChem), however in this case a co-supervisor from the Institute of Chemistry continously verifies the work.

<table>
<thead>
<tr>
<th>Title of course</th>
<th>ECTS Credit points: 13</th>
</tr>
</thead>
<tbody>
<tr>
<td>BSc thesis II.</td>
<td></td>
</tr>
<tr>
<td>Code: TTKBG2012_EN</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type of teaching, contact hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>- lecture: -</td>
</tr>
<tr>
<td>- practice: -</td>
</tr>
<tr>
<td>- laboratory: 13 hours/week</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Evaluation:</th>
</tr>
</thead>
<tbody>
<tr>
<td>practice grade</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Workload (estimated), divided into contact hours:</th>
</tr>
</thead>
<tbody>
<tr>
<td>- lecture: -</td>
</tr>
<tr>
<td>- practice: -</td>
</tr>
<tr>
<td>- laboratory: 182 hours</td>
</tr>
<tr>
<td>- home assignment: 208 hours</td>
</tr>
<tr>
<td>- preparation for the exam: -</td>
</tr>
<tr>
<td>Total: 390 hours</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year, semester:</th>
</tr>
</thead>
<tbody>
<tr>
<td>4th year, 1st semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Its prerequisite(s):</th>
</tr>
</thead>
<tbody>
<tr>
<td>TTKBG2011_EN</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Further courses built on it:</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
</tr>
</tbody>
</table>

Topics of course
The student will complete the task started in the previous semester by critically evaluating the literature, studying and applying the experimental method(s) to solve the given problem, carrying out the necessary practical work, and summarizing the results in a thesis of 20-30 printed pages. Detailed requirements of the thesis is described in the first part of this bulletin and in the Education and Examination Rules and Regulations, which can be found at the homepage of the institute.

Literature
Course objective/intended learning outcomes

a) Knowledge
- He/She has a mathematical and scientific background to understand processes in chemical and chemistry related industries.
- He/She knows the properties of the most important chemicals, their productions and applications.
- He/She knows has a knowledge on the data mining, literature browsing and the ethical concerns of chemical engineering.

b) Abilities
- He/She capable to apply the learned methods, models and plannings of chemical technology and chemical processes through calculations.
- He/She is able to recognize the possible error symptoms, run diagnostic routines and offer solution based on the results.
- He/She is able to use documentation (either online or printed) related to the current field, including the scientific literature both on his/her native language and English.

c) Attitude
- He/She makes effort to improve and apply the practical methods with new results and experiences.
- He/She can collaborate with other people and discuss their opinions in problem solving processes before making new decisions.

d) Autonomy and responsibility
- He/She takes part in scientific project(s) under supervision.
- Following directions he/she can work without supervision considering all quality and safety rules.

Schedule:
The student works by following the instructions of the supervisor.

Requirements:
- for a signature
The student have to take part in the research project coordinated by the supervisor.
- for a grade
The work of the student is evaluated by the supervisor considering many aspects, e.g. the quality of the work in the laboratory or industry, the ability to work alone or in a team, the competence for process the literature about the given topic, the problem solving ability and the presentation of the results.

Person responsible for course: Prof. Dr. Sándor Kéki, Full Professor, responsible for the Chemical Engineering BSc

Lecturer: supervisors are staff members of the Institute of Chemistry, UD or specialists at the cooperating industrial partners (e.g. MOL Petrochemistry, TEVA Pharmaceutical, BorsodChem), however in this case a co-supervisor from the Institute of Chemistry continuously verifies the work.
Optional Courses

<table>
<thead>
<tr>
<th>Title of course</th>
<th>Crystallography</th>
<th>ECTS Credit points:</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>TTGBE5104_EN</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Type of teaching, contact hours
- lecture: 2 hours/week
- practice: -
- laboratory: -

Evaluation: mid-term test, end-term test and written final exam

Workload (estimated), divided into contact hours:
- lecture: 28 hours
- practice: -
- laboratory: -
- home assignment: 10
- preparation for the exam: 30
Total: 68

Year, semester: 1st year, 1st semester

Its prerequisite(s):

Further courses built on it:

Topics of course

Position of crystallography among other fields of science. The definition of space lattice, unit cell and crystallographic axes. Bravais lattices. Unit cells and crystallographic axes in crystal systems. Calculation of Miller indices. Symmetry elements, crystal classes, point groups and space groups. Fundamentals of crystal chemistry and the different types of lattices. Rules of coordination and packing. Lattice defects and element substitutions in the lattice. Physical properties of crystals and their explanation through structural differences.

The understanding of constitution of unit cells and symmetry elements will be supported by the in-class study of three dimensional crystal models.

Literature

Compulsory:

Recommended:

Course objective/intended learning outcomes

a) Knowledge
- knows the definition of space lattice, unit cell and crystal cross, the unit cells and crystal systems according to Bravais,
- knows and able to identify the simple and combined symmetry elements and crystal forms,
- knows the possible combination of the symmetry elements, the point groups and crystal classes,
- knows the basics of crystal chemistry and the different types of lattices,
- knows the most important mechanical, electrical, optical properties of crystals and their connections to crystal structures.

b) Ability
- able to identify the different crystal systems, can give directions in crystallography, can calculate Miller indexes for lattice plains,
- able to identify the symmetry elements in macroscopic crystals, in crystal lattices and even in chemical molecules,
- able to apply the general rules of crystallography in structure research,
- able to interpret the connection between the crystal lattices and bond types in compounds,
- able to interpret the connection between the physical properties of crystals and their structures.

c) Attitude
- endeavour to completely understand the basic rules in crystallography,
- endeavour to understand the connection between inner structure of crystals and their macroscopic appearance,
- endeavour to understand and identify the symmetry elements,
- endeavour to understand the structure of crystall lattices and their effects on structure and physical/chemical properties of substances,
- endeavour to deeper understand the material structures with the use of gained knowledge in crystallography.

d) Autonomy and responsibility
- accept the scale of values of his/her profession with responsibility,
- cooperates with the experts of other fields of science during his/her work,
- understand the importance of crystallography, especially the symmetry in material structure research,
- able to individually process the scientific literature under the appropriate supervision.

Schedule:

1st week

2nd week
Bravais-type unit cells and crystal systems. Crystal cross in crystallography. Definition of directions, lattice planes and crystal faces. The Miller index.
3rd week
The visible symmetry elements of crystals, simple and combined symmetry elements. The stereographic projection. The translational symmetry.

4th week
Practicing of identification of symmetry elements

5th week
Point groups and the 32 crystal classes. Holohedral, hemihedral and tetrahedral crystal classes.

6th week
Mid-term test. Definition of crystal form. Crystal forms and symmetry elements in triclinic, monoclinic and orthorhombic systems.

7th week
Crystal forms and symmetry elements in trigonal, tetragonal and hexagonal crystal systems

8th week
Crystal forms and symmetry elements in cubic crystal system

9th week
Basics of crystal chemistry. X-ray diffraction and Bragg equation. Types of crystal lattices (atomic, inorganic, metallic, molecular lattice). Coordination number, atomic, ionic radii.

10th week

11th week

12th week

13th week

14th week
Crystal optics. Isotropic and anisotropic crystals. Birefringency and optical activity. Summary

Requirements:
- for a signature
Participation at lecture classes is not compulsory but highly advised.
During the semester there will be two tests, the mid-term test in week 6, and the end-term test in week 15. Students have to sit for the tests.

- for a grade

The course ends with a writing examination in the exam period, covering the whole material of the semester. The final grade for the course will be determined according to the followings: it is based on the average grade of the mid-term test and end-term test in 10 %, and based on the result of written exam in 90 %.

The minimum requirement for the average grade of end-term test and mid-term test and final exam is 50%, respectively. The examination is given according to the following table:

<table>
<thead>
<tr>
<th>Score</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-49</td>
<td>fail (1)</td>
</tr>
<tr>
<td>50-59</td>
<td>pass (2)</td>
</tr>
<tr>
<td>60-72</td>
<td>satisfactory (3)</td>
</tr>
<tr>
<td>73-87</td>
<td>good (4)</td>
</tr>
<tr>
<td>88-100</td>
<td>excellent (5)</td>
</tr>
</tbody>
</table>

If the score of the test is below 49, students can take a retake test in conformity with the EDUCATION AND EXAMINATION RULES AND REGULATIONS.

-an offered grade:

it may be offered for students if the average grade of mid-term test and end-term test is at least satisfactory (3).

Person responsible for course: Dr. Gábor Dobosi, professor, DSc

Lecturer: Dr. Dávid Nagy, assistant lecturer, PhD

Basics of Environmental Science

<table>
<thead>
<tr>
<th>Title of course: History of chemistry</th>
<th>ECTS Credit points: 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code: TTKBE0007_EN</td>
<td></td>
</tr>
<tr>
<td>Type of teaching, contact hours</td>
<td></td>
</tr>
<tr>
<td>- lecture: 2 hours/week</td>
<td></td>
</tr>
<tr>
<td>- practice: 0 hours/week</td>
<td></td>
</tr>
<tr>
<td>- laboratory: -</td>
<td></td>
</tr>
<tr>
<td>Evaluation: exam</td>
<td></td>
</tr>
<tr>
<td>Workload (estimated), divided into contact hours:</td>
<td></td>
</tr>
<tr>
<td>- lecture: 30 hours</td>
<td></td>
</tr>
<tr>
<td>- practice: 0 hours</td>
<td></td>
</tr>
<tr>
<td>- laboratory: -</td>
<td></td>
</tr>
<tr>
<td>- home assignment: 30 hours</td>
<td></td>
</tr>
<tr>
<td>- preparation for the exam: 30 hours</td>
<td></td>
</tr>
<tr>
<td>Total: 90 hours</td>
<td></td>
</tr>
<tr>
<td>Year, semester</td>
<td>3rd year, 2nd semester</td>
</tr>
<tr>
<td>--------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>Its prerequisite(s)</td>
<td>TTKBE0101_EN</td>
</tr>
<tr>
<td>Further courses built on it:</td>
<td>- The course is connected to other courses of chemistry teachers (Basics of chemistry teaching, Methods and devices of chemistry teaching)</td>
</tr>
</tbody>
</table>

Topics of course

The topic of this course is the history of chemical thinking, the philosophical foundations of the science, the thinking systems and the history of discovery and inventions. It also concerns the impact of the development of chemistry on culture, history, the world view and the lifestyle of mankind. The lecture covers the ancient and medieval chemistry (metal processing, cleaning, cosmetics, chemistry of medicines) as well, namely, the age of alchemy. We analyse the conditions of the discovery of gases, the development of the interpretation of chemical reactions, the history of the formation of organic chemical concepts, the formation of a modern chemical industry and the age of modern atom theory, the age of electrochemistry and radiochemistry, and the history of medication development. The historical interpretations help to understand the complex relation between the chemistry and the human culture.

Literature

Compulsory:

Recommended:

Course objective/intended learning outcomes

a) Knowledge

He/She can critically evaluate and manage the historical contexts and laws of natural processes, natural resources, living and inorganic systems in a historical dimension. He/She is aware of concepts and terminologies that characterize natural processes in different historical periods. He knows the basic qualitative and quantitative relationships and the principles of chemistry and the history of the development of basic chemical methods based on these. He is familiar with the most important verified theories and models of the formation of atoms and molecules based on the scientific results of chemistry and the formation of chemical bonds.

b) Abilities

He/She is able to compare the interpretations and models of anthropogenic chemical processes in the natural and the related contexts. He/She is able to use the previously learned paradigms, theories and laws on the field of chemical, natural science to plan, execute and evaluate laboratory experiments. He/She is able to collect and evaluate data on the field of chemistry in order to opining for problems on social, scientific or ethical questions. He/She is able to argue on scientific problems by foreign knowledge. He/She is able to communicate on the field of chemistry using foreign language(s). He/She is able to use the previously obtained knowledge on the field of natural and anthropogenic
c) Attitude
He/She seeks after knowing the relationship between nature (especially the chemical phenomena) and the mankind and he/she seeks after understanding these laws. He/she is opened to wider professional cooperation, receptive to new chemical aspects of economics and environmental protection. He represents authentically the scientific world view and historical changes and can transmit it to a professional and non-professional audience. He/she is committed to acquiring new competencies and expanding the world view.

d) Autonomy and responsibility
- Even in unexpected decision-making situations he/she is capable of considering complex, fundamental questions from his/her professional field and elaborating them on the basis of the given sources.

Schedule:

2nd week: The history of the chemistry in the antiquity (Syria, Arabia, Mezopotâmia, Egypt, Asia)

3rd week: Chemistry knowledges in the Greek and a Roman age. The appearance of the alchemy.

4th week: Age of alchemy.

5th week: Development of jatro-chemistry.

6th week: The age of discovery of gases.

7th week: Mixtures, compounds, elements, separation, qualitative analysis, chemical symbols, formules, nominations.

8th week: Development of electrochemistry.

9th week: Development of organic chemistry.

10th week: Development of terminology and language of chemistry

11th week: Chemistry and the turn of the century.

12th week: The history of the discovery of medicines. The history is famous poisons and poisoning.

13th week: Test.

14th week: Evaluation. Declaring of results.

Requirements:
- for a signature
Attendance at lectures is recommended, but not compulsory.

- for a offered grade
 - During the semester there is an end-term test (70% of the total scores) in the 13th week.
 - “work at lecture”: at the beginning of the weekly lecture they can write a test (four questions from the previous lecture) and obtain 4 points, the lecturer will add these point to the end points of term test (10% of the total scores)
 - “individual collecting work”: If the students write and send an excellent collecting work (in themes of the lectures) for the lecturer, she/he can obtain further points (20% of the total scores)

Students can obtain an offered mark, if he/she accept this mark, the examination is not necessary for him/her.
If he/she do not accept the offered mark, the course ends in an writing or oral examination. The minimum requirement for end-term tests and the examination respectively is 60%. Based on the score of the tests separately, the grade for the tests and the examination is given according to the following table:

<table>
<thead>
<tr>
<th>Score</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-49</td>
<td>fail (1)</td>
</tr>
<tr>
<td>50-59</td>
<td>pass (2)</td>
</tr>
<tr>
<td>60-74</td>
<td>satisfactory (3)</td>
</tr>
<tr>
<td>75-89</td>
<td>good (4)</td>
</tr>
<tr>
<td>90-100</td>
<td>excellent (5)</td>
</tr>
</tbody>
</table>

If the score of any test is below 50%, students can take a retake test in conformity with the EDUCATION AND EXAMINATION RULES AND REGULATIONS.

Person responsible for course: Dr. Ágnes Dávid, assistant lecturer, PhD

Lecturer: Dr. Ágnes Dávid, assistant lecturer, PhD

<table>
<thead>
<tr>
<th>Title of course: Macroeconomics</th>
<th>ECTS Credit points: 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code: TTBEBVM-KT3_EN</td>
<td></td>
</tr>
</tbody>
</table>

Type of teaching, contact hours
- lecture: 2 hours/week
- practice: -
- laboratory: -

Evaluation: exam

Workload (estimated), divided into contact hours:
- lecture: 28 hours
- practice: -
- laboratory: -
- home assignment: -
- preparation for the exam: 62 hours

Total: 90 hours

Year, semester: 2nd year, 1st semester (or any later fall semester)

Its prerequisite(s): TTBEBVVM-KT1_EN
Further courses built on it: -

Topics of course

The course is aimed at making students familiar with the basic issues of macroeconomics, and make them able to use those fundamental analytical tools which are needed to think about macroeconomic questions. By the end of the course the students have to be able to use a model of a closed economy in analysing macroeconomic phenomena will have some basic insights about an open economy, too. The topics of the course cover the basic principles of macroeconomics, measuring GDP, inflation, and unemployment, the basics of the financial system, labour market processes, and economic policy.

Literature

Compulsory:

Recommended:

Course objective/intended learning outcomes

a) **Knowledge**
- He/She knows the chemistry and chemical technology related economical, management environmental safety, quality assurance (QC/QA), informatics and intellectual property rules and laws.

b) **Abilities**
- He/She capable to apply the learned methods, models and plannings of chemical technology and chemical processes through calculations.

c) **Attitude**
- He/She is open to accept environmentally efficient technologies, and for the application of new, innovative and advanced methods in economy.
- He/She can collaborate with other people and discuss their opinions in problem solving processes before making new decisions.

d) **Autonomy and responsibility**
- He/She follows the personal improvements and helps others to achieve their professional goals.
- He/She shares experiences with others to help them.

Schedule:

1st week
The fundamental questions of macroeconomics.
LO: The students are aware of the main questions of macroeconomics and some of the connections between them.

2nd week
Aggregates in macroeconomics.
LO: The students understand the meaning of aggregation and the aggregates that are used most often.

3rd week
Measuring income: nominal and real GDP.
LO: The students understand the different approaches to measuring GDP and the relationships between these approaches.

4th week
Measuring the costs of living.
LO: The students understand the steps through which the consumer price index is calculated, and the meaning of that index.

5th week
Money, monetary system, money supply, demand for money, and inflation I
LO: The students know the functions of money and have a birds-eye view of the money creation process.

6th week
Money, monetary system, money supply, demand for money, and inflation II
LO: The students understand the role and structure of the banking sector in the economy, are aware of the basic roles of the central bank, are able to explain some of the social costs, and cause, of inflation.

7th week
The time value of money
LO: The students are aware of the methods of comparing future income flows with different timing.

8th week
Saving, investment, and the financial system.
LO: The students understand the function of savings, and that of the market for loanable funds in the economy. They know the basic types of financial assets such as stocks and bonds.

9th week
Labour market and unemployment.
LO: The students know the main measures to describe the labour market with, the main reasons, and the types of, unemployment.

10th week
Short-run economic fluctuations I.
LO: The students re familiar with the notion of aggregate demand and supply.

11th week
Short-run aggregate fluctuations II.
LO: The students are familiar with the possibilities and limitations of fiscal and monetary policy in countervailing recessions.
12th week
The economy in the long run.
LO: Students are familiar with the factors that determine aggregate income in the long run.

13th week
International economic relations.
LO: Students are familiar with the basic welfare implications of international trade, and the effects of protectionism.

14th week
Summary.
LO: Students have a birds-eye view of the relationships of the topics that will have been discussed.

Requirements:
- for a signature
 There is no requirement for a signature.
- for a grade
 Assessment is based on a written exam which will be evaluated according to the following grading schedule:
 0 -50% – fail (1)
 50%+1 point -63% – pass (2)
 64% -75% – satisfactory (3)
 76% -86% – good (4)
 87% -100% – excellent (5)

Person responsible for course: Dr. Pál Czeglédi, associate professor, PhD
Lecturer: Dr. István Kovács, assistant professor, PhD

<table>
<thead>
<tr>
<th>Title of course: Special and dangerous materials.</th>
<th>ECTS Credit points: 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code: TTKBE0204_EN</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type of teaching, contact hours</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>- lecture: 2 hours/week</td>
<td></td>
</tr>
</tbody>
</table>

| Evaluation: examination | |

<table>
<thead>
<tr>
<th>Workload (estimated), divided into contact hours:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>- lecture: 28 hours</td>
<td></td>
</tr>
<tr>
<td>- practice: -</td>
<td></td>
</tr>
<tr>
<td>- laboratory: -</td>
<td></td>
</tr>
<tr>
<td>- home assignment: -</td>
<td></td>
</tr>
<tr>
<td>- preparation for the exam: 56 hours</td>
<td></td>
</tr>
<tr>
<td>Total: 84 hours: 3 credit x 28 hours</td>
<td></td>
</tr>
</tbody>
</table>

| Year, semester: 2nd-4th year, 1st semesters | |

| Its prerequisite(s): TTKBE0201_EN, TTKBE0301_EN, TTKBE0401_EN | |

| Further courses built on it: | |
Topics of course

Structure, composition, properties and handling/safe use of special materials, which may represent a personal, social or environmental risk or even a life-threatening danger in case of accidents, war, or illicit use.

Literature

Compulsory:

Recommended:

Course objective/intended learning outcomes

a) Knowledge
- He/she fundamentally knows major types of dangerous and/or illicit materials, their properties, legal and illegal uses and the danger they represent.

b) Abilities
- He/she is able to recognize the major types of the dangerous materials and to estimate the risk they represent.
- He/she is able to make or take part in a plan to keep the persons/environment safe from dangerous materials. He/she is able to give advice on possible/expected behaviour of the dangerous materials.

c) Attitude
- He/she is open to learn and accept professional, technological improvement and innovation in his/her profession and convey it genuinely.
- He/she makes a decision in complex and unexpected cases by completely taking into account legal and ethical norms.

d) Autonomy and responsibility
- Even in unexpected decision-making situations he/she is capable of considering complex, fundamental questions from his/her professional field and elaborating them on the basis of the given sources.
- He/she confesses and represents the value system of the qualified chemists’ or chemical engineers’ profession with responsibility. He/she is open to critical remarks which are professionally well-founded.

Schedule:

1st week

2nd week
3rd week
Narcotics, hard and soft drugs 3. LSD, mescaline, and related derivatives.

4th week

5th week
Narcotics, hard and soft drugs 5. Synthetics 1. Amphetamine and derivatives, Extasy, etc..

6th week

7th week
Chemical weapons 1. Major groups, target organs, toxicity. Tear gases, lachrymators.

8th week
Chemical weapons 2. Blood poisons, lung poisons, vesicants.

9th week

10th week

11th week

12th week

13th week

14th week
Pheromones. Basic properties, mode of action, role in the behavior control and in the physiological signaling processes. Use of pheromones in the agriculture, and in the animal life. Pheromone-like materials, the Dirty 12.

Requirements:
- for a signature
Attendance at lectures is recommended, but not compulsory.

- for a grade
The course ends in an examination. The minimum requirement for the examination is 50 score. Based on the score, the grade for the examination is given according to the following table:

<table>
<thead>
<tr>
<th>Score</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-49</td>
<td>fail (1)</td>
</tr>
<tr>
<td>50-62</td>
<td>pass (2)</td>
</tr>
<tr>
<td>63-75</td>
<td>satisfactory (3)</td>
</tr>
<tr>
<td>76-88</td>
<td>good (4)</td>
</tr>
<tr>
<td>89-100</td>
<td>excellent (5)</td>
</tr>
</tbody>
</table>

If the score of any test is below 60, students can take a retake test in conformity with the EDUCATION AND EXAMINATION RULES AND REGULATIONS.
Person responsible for course: Dr. István Lázár, associate professor, PhD

Lecturer: Dr. István Lázár, associate professor, PhD

Title of course: Computational Quantum Chemistry
Code: TTKBG0903_EN
ECTS Credit points: 3

Type of teaching, contact hours
- lecture: -
- practice: 2 hours/week
- laboratory: -

Evaluation: exam

Workload (estimated), divided into contact hours:
- lecture: -
- practice: 28 hours
- laboratory: -
- home assignment: 32 hours
- preparation for the exam: 30 hours
Total: 90 hours

Year, semester: 2nd / 3rd year, 2nd semester

Its prerequisite(s):
TTMBE0809_EN, TTMBG0809_EN, TTKBG0911_EN

Further courses built on it: -

Topics of course
- Hartree-Fock Theory
- Density Functional Theory
- Basis sets
- Solvent effect, Polarizable Continuum Model
- Geometry optimization
- Structural analysis
- Calculating energies of chemical reactions

Literature

Compulsory:
https://maker.pro/linux/tutorial/basic-linux-commands-for-beginners
http://gaussian.com/keywords/

Recommended:

Course objective/intended learning outcomes

a) Knowledge
He/She knows the basic qualitative and quantitative chemical principles, and the methods based on it.
He/She knows the main models and theories of chemical bonds and molecular structure based on scientific findings.
He/She has a basic chemical knowledge on describing simple chemical processes as well as on recognizing, organizing these in practice.
He/She has the knowledge to test or measure chemical reactions, systems with scientific methods (including computational) under supervision.

b) Abilities

He/She is able to evaluate and discuss the calculations, and create a report about it.
He/She is able to collect and evaluate data on the field of chemistry in order to opining for problems on social, scientific or ethical questions.
He/She is able to argue on scientific problems by his/her knowledge.
He/She is able to communicate on the field of chemistry using foreign language(s).

c) Attitude

He/She is ready to discuss problems on the field of chemistry and other science with professionals.
He/She is able to represent his/her own personal scientific ideology toward professional and unprofessional groups.
He/She is committed learn or get insights into new competence or ideology.
He/She is well aware about his/her propositions and its consequences.

d) Autonomy and responsibility

He/She stands for his/her opinion or ideology in professional discussions.
He/She can make reasonable evaluations about his/her own work comparing to others to the same field.

Schedule:

1st week

2nd week
Basic Linux commands, using the WinSCP and Putty programs, connecting by SFTP. Using the Gaussian program package, optimizing simple molecules.

3rd week
Geometry optimizations by different basis sets, comparing and calibrating the methods by structural parameters.

4th week
Frequency analysis, calculating Gibbs free energies of simple reactions. Scanning a reaction pathway, finding the transition state, identifying the stationary points of the Potential Energy Surface.
5th week
Basic theory of the post-Hatree-Fock theories. Recalculating the previously studied systems and comparing them to the HF results.

6th week
Solvent effect, using Polarizable Continuum Models to refine the energies.

7th week
Basic theory of the Density Functional Theory. Recalculating the previously studied systems and comparing them to the (post-)HF results.

8th week
Systems with explicit solvent molecules.

9th week
Calculation on more difficult systems: metal complexes and relativistic effects.

10th week
Mid-term exam about calculations by using Gaussian.

11th week
Conformation analysis, more Linux commands.

12th week
Writing simple scripts in b shell.

13th week
Generating input files by scripts.

14th week
Exam of writing scripts in b shell.

Requirements:
- for a signature
Attendance is recommended, maximum 3 absences are accepted.

- for a grade
Class performance (33%)
Final examination (67%)

Based on the sum of the final practical exam of performing calculations and the class performance the practical grade is calculated.

The final grade is given according to the following table:

<table>
<thead>
<tr>
<th>Score (%)</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-49</td>
<td>fail (1)</td>
</tr>
<tr>
<td>50-59</td>
<td>pass (2)</td>
</tr>
<tr>
<td>60-74</td>
<td>satisfactory (3)</td>
</tr>
<tr>
<td>75-89</td>
<td>good (4)</td>
</tr>
<tr>
<td>90-100</td>
<td>excellent (5)</td>
</tr>
</tbody>
</table>

If the score of the final grade is below 50%, students can take a retake test in conformity with the EDUCATION AND EXAMINATION RULES AND REGULATIONS.

Person responsible for course: Dr. Mihály Purgel, assistant professor, PhD

Lecturer: Dr. Mihály Purgel, assistant professor, PhD (67%)
Dr. Attila Mándi, assistant professor, PhD (33%)
<table>
<thead>
<tr>
<th>Title of course:</th>
<th>Applied Radiochemistry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code:</td>
<td>TTKBE0504_EN</td>
</tr>
<tr>
<td>ECTS Credit points:</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type of teaching, contact hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>- lecture: 2 hours/week</td>
</tr>
<tr>
<td>- practice: -</td>
</tr>
<tr>
<td>- laboratory: -</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Evaluation:</th>
<th>exam</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Workload (estimated), divided into contact hours:</th>
</tr>
</thead>
<tbody>
<tr>
<td>- lecture: 28 hours</td>
</tr>
<tr>
<td>- practice: -</td>
</tr>
<tr>
<td>- laboratory: -</td>
</tr>
<tr>
<td>- home assignment: 22 hours</td>
</tr>
<tr>
<td>- preparation for the exam: 40 hours</td>
</tr>
<tr>
<td>Total: 90 hours</td>
</tr>
</tbody>
</table>

| **Year, semester:** | 3rd year, 1st semester |

| **Its prerequisite(s):** | TTKBE0403_EN |

| **Further courses built on it:** | - |

<table>
<thead>
<tr>
<th>Topics of course</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Interaction of radiation with matter and its practical aspects.</td>
</tr>
<tr>
<td>- Radioactive labeling.</td>
</tr>
<tr>
<td>- Production of radionuclides.</td>
</tr>
<tr>
<td>- Chemical, biological, medical applications</td>
</tr>
<tr>
<td>- Nuclear energy production.</td>
</tr>
<tr>
<td>- Tools and facilities of isotope laboratories.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Literature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compulsory:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course objective/intended learning outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Knowledge</td>
</tr>
<tr>
<td>- He/She has a basic knowledge on the applications of radioisotopes, including the production of radionuclides, tracer methods, chemical applications, nuclear energy production, operation of isotope laboratories.</td>
</tr>
<tr>
<td>b) Abilities</td>
</tr>
<tr>
<td>- He/She is able to use the obtained chemical knowledge on the field of the application of radioisotopes, to solve the actual basic problems and prove the obtained solution.</td>
</tr>
<tr>
<td>- He/She is able to argue on scientific problems by his/her knowledge.</td>
</tr>
<tr>
<td>c) Attitude</td>
</tr>
</tbody>
</table>
- He/She is open toward scientific and other postgradual education.
- He/She treats the scientific results or intellectual properties with the adequate professional ethics.

d) Autonomy and responsibility
- He/She can make reasonable evaluations about his/her own work comparing to others to the same field.
- He/She can evaluate his/her co-workers work’s responsibly in both laboratory and industrial environment, and report it to his/her chief.

Schedule:

1st week
Interaction of radiation with matter, general sketch of the applications.

2nd week
Radiotracer, physical chemistry of carrier-free concentrations.

3rd week
Basic rules of tracer studies.

4th week
Selection of radiotracer.

5th week
Preparation of frequently used radiotracer, general methods.

6th week
Preparation of frequently used radiotracer, examples.

7th week
Classification of tracer methods, the role of mixing entropy.

8th week
Tracer studies in physical chemistry: kinetics of exchange reactions, coprecipitation, determination of solubility, diffusion studies, surface area determination.

9th week
Analytical applications: isotope dilution, radiometric titration, activation analysis.

10th week
Nuclear and radioanalytical methods based on radiation-matter interactions.

11th week
Applications of isotopes in chemical industry.

12th week
Tracer studies in medicine.

13th week
New trends in nuclear energy production.

14th week
Operation, tools, and facilities of isotope laboratories.

Requirements:

- for a signature
 Attendance at lectures is recommended, but not compulsory.

- for a grade
 The course ends in an examination. Based on the examination, the exam grade is given according to the following table:

<table>
<thead>
<tr>
<th>Score</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-59</td>
<td>fail (1)</td>
</tr>
</tbody>
</table>
If the score of the examination is below 60, students can take a retake test in conformity with the EDUCATION AND EXAMINATION RULES AND REGULATIONS.

-an offered grade:

It may be offered for students if they write a test on the 14th week and the score of it is at least 60%. The offered grade is calculated as the exam grade (see above).

Person responsible for course: Dr. Noémi Nagy, professor, DSc

Lecturer: Dr. Noémi Nagy, professor, DSc

<table>
<thead>
<tr>
<th>Title of course: Plastics and Processing II.</th>
<th>ECTS Credit points: 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code: TTKBE0711_EN</td>
<td></td>
</tr>
</tbody>
</table>

Type of teaching, contact hours
- lecture: -
- practice: 2 hours/week
- laboratory: -

Evaluation: exam

Workload (estimated), divided into contact hours:
- lecture: -
- practice: 28 hours
- laboratory: -
- preparation for the tests: 40 hours

Total: 68 hours

Year, semester: 3rd year, 2nd semester

Its prerequisite(s): TTKBE0611_EN

Further courses built on it: -

Topics of course

Literature

Recommended:
1. Website of MOL Petrochemicals

<table>
<thead>
<tr>
<th>Course objective/intended learning outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Knowledge</td>
</tr>
<tr>
<td>- He/She knows the production technologies of the most important polymers.</td>
</tr>
<tr>
<td>b) Abilities</td>
</tr>
<tr>
<td>- He/She is able to interpret the operations in the entire process of technology</td>
</tr>
<tr>
<td>- He/She is able to conduct professional communication from the above area.</td>
</tr>
<tr>
<td>- He/She is able to expand / improve its technological know-how in new tasks.</td>
</tr>
<tr>
<td>c) Attitude</td>
</tr>
<tr>
<td>- He/She is open to gain new knowledge in the subject.</td>
</tr>
<tr>
<td>- He/She also asks his colleagues to comply with the rules of accident protection and safety and shows an example of his own work.</td>
</tr>
<tr>
<td>d) Autonomy and responsibility</td>
</tr>
<tr>
<td>- He/She tends to establish new solutions and technologies.</td>
</tr>
<tr>
<td>- He/She with a little professional guidance is able to carry out smaller sub-tasks independently.</td>
</tr>
<tr>
<td>- He/She is able to carry out safety training and, in simpler cases he/she is able to evaluate realistically potential hazards independently.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Schedule:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1<sup>st</sup> week</td>
</tr>
<tr>
<td>The current situation and future prospects of world and domestic plastics production and use.</td>
</tr>
<tr>
<td>2<sup>nd</sup> week</td>
</tr>
<tr>
<td>Production of polyethylene I. (high pressure).</td>
</tr>
<tr>
<td>3<sup>rd</sup> week</td>
</tr>
<tr>
<td>Production of polyethylene II. (high pressure tube reactor and medium pressure processes) and its applications.</td>
</tr>
<tr>
<td>4<sup>th</sup> week</td>
</tr>
<tr>
<td>Production of polypropylene, newer technology development.</td>
</tr>
<tr>
<td>5<sup>th</sup> week</td>
</tr>
<tr>
<td>Domestic technologies for production of polypropylene (bulk polymerization and gas phase processes), use of polypropylene.</td>
</tr>
<tr>
<td>6<sup>th</sup> week</td>
</tr>
<tr>
<td>Production of polystyrene (high impact strength and expandable polystyrene) and its use.</td>
</tr>
<tr>
<td>7<sup>th</sup> week</td>
</tr>
<tr>
<td>Possibilities of manufacturing PVC</td>
</tr>
<tr>
<td>8<sup>th</sup> week</td>
</tr>
<tr>
<td>Home production and use of PVC.</td>
</tr>
<tr>
<td>9<sup>th</sup> week</td>
</tr>
<tr>
<td>10<sup>th</sup> week</td>
</tr>
<tr>
<td>R Production and use of polyacrylonitrile.</td>
</tr>
<tr>
<td>11<sup>th</sup> week</td>
</tr>
<tr>
<td>Manufacture and use of polyester fabrics.</td>
</tr>
</tbody>
</table>
Requirements:
Attendance at seminars is compulsory.
The course ends with test for a partial grade. (This test is compulsory!) The minimum requirement for the test is 50%. The grade is given according to the following table:

<table>
<thead>
<tr>
<th>Score</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-49</td>
<td>fail (1)</td>
</tr>
<tr>
<td>50-59</td>
<td>pass (2)</td>
</tr>
<tr>
<td>60-80</td>
<td>satisfactory (3)</td>
</tr>
<tr>
<td>81-90</td>
<td>good (4)</td>
</tr>
<tr>
<td>91-100</td>
<td>excellent (5)</td>
</tr>
</tbody>
</table>

All the students will deliver a ppt presentation on a subject. They will get a second partial grade. The term grade will be calculated by the following way: 60% of the test result, 40% of the ppt presentation.

Person responsible for course: Dr. György Deák, associate professor, PhD

Lecturer: Dr. György Deák, associate professor, PhD

Title of course: Colloid Chemistry
Code: TTKBE0415_EN
ECTS Credit points: 3

Type of teaching, contact hours
- lecture: 2 hours/week
- practice: -
- laboratory: -

Evaluation: exam

Workload (estimated), divided into contact hours:
- lecture: 14 hours
- practice: - hours
- laboratory: -
- home assignment: 40 hours
- preparation for the exam: 40 hours

Total: 94 hours

Year, semester: 3rd year, 2nd semester

Its prerequisite(s): TTKBE0402_EN

Further courses built on it: -

Topics of course
The goal of this series of lectures is to give knowledge to the students about the relation between size and physico-chemical properties. Students are expected to get acquainted with the behaviour of nanosized particles, the role of the interfaces and their possible applications.

Literature

Compulsory:
- Lecture slides downloadable from the Department's homepage (http://fizkem.unideb.hu)

Course objective/intended learning outcomes

a) Knowledge
- He/She knows the main models and theories of chemical bonds and molecular structure based on scientific findings.
- He/She has a knowledge to solve problems on the field of natural processes, using natural sources, and understanding the chemical background of living and non living systems.

b) Abilities
- He/She is able to use the previously obtained knowledge on the field of natural and anthropogenic studies to solve practical problems.
- He/She is able to argue on scientific problems by his/her knowledge.

c) Attitude
- He/She is ready to discuss problems on the field of chemistry and other science with professionals.
- He/She is able to represent his/her own personal scientific ideology toward professional and unprofessional groups.
- He/She is open toward scientific and other postgradual education.

d) Autonomy and responsibility
- He/She can make reasonable evaluations about his/her own work comparing to others to the same field.
- He/She stands for his/her opinion or ideology in professional discussions.

Schedule:

1st week
Introduction. The notion of colloids and the classification of colloid systems. Synthesis of colloids. Relation between colloids and nanotechnology. Average and types of average.

2nd week
Molecular interactions. Quantitative description of electrostatic and van der Waals interactions, their role in the synthesis of colloids. Lennard-Jones potential. Hydrophilic and hydrophobic interactions.

3rd week
Notion and characterization of interfaces. Fluid interfaces. Interfacial phenomena, the concept of surface tension. The Eötvös rule. Laplace pressure, importance of curved surfaces.
4th week

5th week

6th week

7th week

8th week

9th week

10th week
Liquid-liquid disperse systems. Preparation and breaking of emulsions. Emulsifiers, the HLB value.

11th week
Solid-liquid disperse systems. Their preparation, stabilization, kinetic description of their formation.

12th week
Association colloids. Surface activity. Amphiphilic molecules and micelles. Micelle formation, the critical micelle concentration. Surfactants, detergents.

13th week

14th week

Requirements:
- for a signature
Attendance at lectures is recommended, but not compulsory.
The course ends in an **examination**. The minimum requirement for the examination is 50%. The grade for the examination is given according to the following table:

<table>
<thead>
<tr>
<th>Score</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-49</td>
<td>fail (1)</td>
</tr>
<tr>
<td>50-59</td>
<td>pass (2)</td>
</tr>
<tr>
<td>60-74</td>
<td>satisfactory (3)</td>
</tr>
<tr>
<td>75-89</td>
<td>good (4)</td>
</tr>
<tr>
<td>90-100</td>
<td>excellent (5)</td>
</tr>
</tbody>
</table>

If the score of any test is below 50%, students can make a retake test in conformity with the **EDUCATION AND EXAMINATION RULES AND REGULATIONS**.

Person responsible for course: Dr. Levente Novák, assistant professor, PhD

Lecturer: Dr. Levente Novák, assistant professor, PhD

Title of course: Biochemistry III
Code: TTBBE0304_EN
ECTS Credit points: 3

Type of teaching, contact hours
- lecture: 2 hours/week
- practice: -
- laboratory: -

Evaluation: exam

Workload (estimated), divided into contact hours:
- lecture: 28 hours
- practice: -
- laboratory: -
- home assignment:
- preparation for the exam: 60 hours
Total: 60 hours

Year, semester: 2nd year, 2nd semester

Its prerequisite(s): Biochemistry I

Further courses built on it: -

Topics of course

The lectures cover the main features of the protein structures including fibrous proteins and the membrane proteins with their role in transport. There is an insight into the photosynthesis: the light reactions and the carbon-assimilation reactions. The nucleotide metabolism is summarized. The biosynthesis of macromolecules such as DNA, RNA and protein will also be described. Post-translational modification: N-glycosylation is also mentioned.

Literature

Compulsory: The lecture notes
Recommended:

Course objective/intended learning outcomes

a) Knowledge
- He/she knows the structural and functional features of the proteins including fibrous and membrane proteins.
- She/he knows the principles that govern the photosynthetic processes.
- She/he is also aware of the characteristics of the nucleic acid and protein biosynthesis.

b) Abilities
- He/she is able to understand the function of the different structural form of the proteins.
- He/she is able to understand the fundamentals of the biosynthetic pathways of the macromolecules.
- He/she is able to understand of the complex events at the different stages of the photosynthesis.

c) Attitude
- He/she is open to the contextual observations of the studied area and is motivated to follow the latest scientific theories in that field.

d) Autonomy and responsibility
- He/she is capable of considering complex questions on the studied scientific field on her/his own as well as in a team.
- He/she shows responsibilities in her/his profession.

Schedule:

1st week
The different structural level or proteins. Protein folding and chaperons. Protein misfolding. Structural classification of proteins.

2nd week

3rd week
The role of membrane proteins in transport processes of the cell. Facilitated diffusion by transport proteins. Primary and secondary active transport. The ion selective channels.

4th week
The role, the location and the components of photosynthesis. The light driven electron flow in Photosystem I and II. The function and structure of Cythocrome b₆f complex.

5th week
The synthesis of ATP and NADPH in the light reactions of photosynthesis. The cyclic photophosphorylation. The water splitting complex. Comparing the light reactions of the photosynthesis with the oxidative phosphorylation taking place at the mitochondria.

6th week
Photosynthetic assimilation of carbon dioxide. The function, structure and regulation of Rubisco.
The three stages of the Calvin cycle. Photorespiratory reactions and the C4 pathway.

7th week
Nucleotide Metabolism. The biological function of nucleotides. The pyrimidin de novo biosynthesis. The interconversion of nucleoside mono-, di-, and triphosphates.

8th week
The purin de novo biosynthesis. The role of tetrahydrofolate in the nucleotide biosynthesis. The Salvage pathway. The function of ribonucleotide reductase in the generation of deoxyribonucleotides. Degradation of purin and pyrimidine nucleotides.

9th week
The biosynthesis of deoxyribonucleic acid. The helical structure of DNA. The Meselson-Stahl experiment. The stages of replication in prokaryotes. The replication forks. DNA synthesis on the leading and lagging strands.

10th week
The function of the protein factors and enzymes involved in the processes of replication including primase, DNA polymerases I and III, DNA ligase. Termination of chromosome replication in bacterial cell.

11th week
The biosynthesis of ribonucleic acids in prokaryotes. The function and characteristics of the DNA-dependent RNA polymerase. Transcription initiation, elongation and termination.

12th week
The biosynthesis of ribonucleic acids in eukaryotes. The function of the different RNA polymerases. Assembly of the Initiation Complex. RNA processing: 5’ capping and 3’ Poly(A) Tail. RNA splicing.

13th week

14th week
Signal sequences and protein targeting. Protein translocation into the ER. Post-translational modification: N-glycosylation and its function.

Requirements:
- for a signature
 Attendance at lectures is recommended, but not compulsory.
- for a grade
 The course ends in an examination.
 The grade for the examination is given according to the following table:
 - Score Grade
 - 0-59 fail (1)
 - 60-69 pass (2)
 - 70-79 satisfactory (3)
 - 80-89 good (4)
 - 90-100 excellent (5)
 If the score of examination is below 60, students can take a retake test in conformity with the EDUCATION AND EXAMINATION RULES AND REGULATIONS.

Person responsible for course: Dr. Teréz Barna, PhD

Lecturer: Dr. Teréz Barna, PhD
<table>
<thead>
<tr>
<th>Title of course: Biocolloids</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code: TTKBE0405_EN</td>
</tr>
<tr>
<td>ECTS Credit points: 3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type of teaching, contact hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>- lecture: 2 hours/week</td>
</tr>
<tr>
<td>- practice: -</td>
</tr>
<tr>
<td>- laboratory: -</td>
</tr>
</tbody>
</table>

| Evaluation: | exam |

<table>
<thead>
<tr>
<th>Workload (estimated), divided into contact hours:</th>
</tr>
</thead>
<tbody>
<tr>
<td>- lecture: 14 hours</td>
</tr>
<tr>
<td>- practice: -</td>
</tr>
<tr>
<td>- laboratory: -</td>
</tr>
<tr>
<td>- home assignment: 40 hours</td>
</tr>
<tr>
<td>- preparation for the exam: 40 hours</td>
</tr>
<tr>
<td>Total: 94 hours</td>
</tr>
</tbody>
</table>

| Year, semester: | 2nd/3rd year, 2nd semester |

| Its prerequisite(s): | TTKBE0402_EN |

| Further courses built on it: | - |

Topics of course

The goal of this series of lectures is to give knowledge about the relationship between biological sciences and colloid/surface phenomena. A further goal is to deepen colloid chemical knowledge of students about biological phenomena related to colloids. It makes them able to approach biological problems from a colloid chemical perspective and to solve possible problems and tasks in this context.

Literature

Compulsory:
- Lecture slides downloadable from the Department's homepage (http://fizkem.unideb.hu)

Recommended:

Course objective/intended learning outcomes

a) Knowledge
- He/She knows the main models and theories of chemical bonds and molecular structure based on scientific findings.
- He/She has knowledge to solve problems on the field of natural processes, using natural sources, and understanding the chemical background of living and non living systems.
b) Abilities
- He/She is able to use the previously obtained knowledge on the field of natural and anthropogenic studies to solve practical problems.
- He/She is able to argue on scientific problems by his/her knowledge.

c) Attitude
- He/She is ready to discuss problems on the field of chemistry and other science with professionals.
- He/She is able to represent his/her own personal scientific ideology toward professional and unprofessional groups.
- He/She is open toward scientific and other postgraduate education.

d) Autonomy and responsibility
- He/She can make reasonable evaluations about his/her own work comparing to others to the same field.
- He/She stands for his/her opinion or ideology in professional discussions.

Schedule:
1st week
Importance of colloidal state in biology. Hypotheses about the origin of life in the past and nowadays. Occurrence of organic matter in space. Hyperresistant organisms and survival under the conditions found in space. Shadow biosphere and "artificial life".

2nd week

3rd week
Diffusion and transport phenomena through membranes, osmosis and dialysis. Transport phenomena in living organisms. Function of the kidneys, artificial kidney.

4th week
Adsorption phenomena in biological systems, processes in biotechnology and separation sciences.

5th week

6th week

7th week
Modern instrumental methods in the study of biomacromolecules (ultracentrifugation,
electrophoresis, size exclusion chromatography, scanning confocal microscopy, electron microscopy, scanning probe microscopy, surface plasmon resonance, X-ray diffraction, NMR).

8th week
Macromolecules, types and importance of macromolecules. Characterization and importance of dispersity, shape, and conformation.

9th week
Important and interesting biomacromolecules, their properties, importance and uses (polysaccharides: cellulose, starch, chitin, etc.; proteins: collagen, silk, green fluorescent protein, etc.; others: lignin, chlorophylls, haemoglobin, etc.).

10th week
Dispersion colloids in nature. Bioaerosols and smokes. Importance of foams, emulsions, sols and their biological relevance. Making and breaking of dispersions in different biological, medical, pharmaceutical, etc. processes.

11th week

12th week
Electrokinetic effects, precipitation from liquids. Epitaxis. Kidney and bile stones, processes of their formation.

13th week

14th week

Requirements:
- for a signature
 Attendance at lectures is recommended, but not compulsory.
- for a grade
 The course ends in an examination. The minimum requirement for the examination is 50%. The grade for the examination is given according to the following table:

<table>
<thead>
<tr>
<th>Score</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-49</td>
<td>fail (1)</td>
</tr>
<tr>
<td>50-59</td>
<td>pass (2)</td>
</tr>
<tr>
<td>60-74</td>
<td>satisfactory (3)</td>
</tr>
<tr>
<td>75-89</td>
<td>good (4)</td>
</tr>
<tr>
<td>90-100</td>
<td>excellent (5)</td>
</tr>
</tbody>
</table>

If the score of any test is below 50%, students can make a retake test in conformity with the EDUCATION AND EXAMINATION RULES AND REGULATIONS.
Title of course: NMR Operator Training Practice I.
Code: TTKML0004_EN, TTKBL0004_EN
ECTS Credit points: 2

Type of teaching, contact hours
- practice: 2 hours/week

Evaluation: practical exam

Workload (estimated), divided into contact hours:
- practice: 28 hours
- preparation for the exam: 32 hours
Total: 60 hours

Year, semester: 2nd year, 2nd semester or 3rd year, 1st or 2nd semester

Its prerequisite(s): Spectroscopic methods I. TTKBE0503_EN

Further courses built on it: Advanced NMR practical course TTKMG0530_EN

Topics of course: practical laboratory course with aim that students would be able to pick up 1H and 13C NMR spectra on the 360MHz high field NMR spectrometer without external help

Literature

Bruker Topspin 3.x manuals (free download)

Course objective/intended learning outcomes

a) **Knowledge:** firm knowledge of the basic principles of high resolution NMR spectroscopy. Pulse-Fourier principle of NMR spectroscopy.

b) **Abilities:** to run Bruker NMR spectrometers using topspin software, pick up 1D 1H NMR and 13C NMR spectra within 1 hr timeframe.

c) **Attitude:** critical and responsible concerning the obtained NMR spectra, with respect to general quality, accuracy etc.

d) **Autonomy and responsibility:** The main aim is the independent and autonomous use of the sophisticated superconducting spectrometers. Must pay attention to save the technical conditions of the equipments, including the protection of supercon magnets from accidental failure.
Schedule:

2nd week Sample preparation: use of deuterated solvents, quality and cleaning of NMR sample tubes, sample amount and dissolving rules. Positioning the samples before measurement, pneumatic transfer of samples into the magnet. Use of deuterium lock in automatic or manual mode. Lock power, field, phase, gain, finding the lock signal. Optimizing lock parameters avoiding saturation of the deuterium signal.

3rd week Homogenisation of the main magnetic field up to 10^{-9}-10^{-10} accuracy, using the lock signal amplitude. Sample spinning, use of z-shim coils. Non-spinning shims (x,y) combinations. Changing lock phase. Reading and writing shim files (rsh/wsh). Signs of bad shimming. Indicators of good shims in TMS signal.

4th week Recording proton NMR spectra. Measurement principles: pulse program zg and it's visualisation. Acquisition parameters in eda and ased starting windows. Explanation of important parameters: digital sampling and connection between td, sw, aq parameters. Choice of p1 pulse and d1 relaxation delay for quantitative 1H-NMR. Real-time FID shimming in gs mode.

5th week Processing proton NMR spectra. Math rules of Fourier transformation with FFT. TD and SI, zero filling. Window functions for S/N enhancement (em) or resolution (gm) enhancement. Phase correction to pure absorption phase - automatic or manual. Baseline correction for accurate integrals. Integration routine and calibration, correction of integrals.

6th week Recording carbon NMR spectra. Pulse programs zgdc and jmod. Explaining the double impact of proton decoupling: removing splittings caused by proton-carbon spin-spin couplings and heteronuclear NOE that improves carbon sensitivity. Explaining the proton channel power and dB scale, and heating effect danger. Exponential line broadening is a must (em) before FT. Explaining and running the jmod spin-echo sequence.

7th week Recording more carbon NMR spectra with gated (zggd) and inverse gated (zgig) sequences. The former for measuring heteronuclear couplings with better sensitivity, the latter for quantitative 13C-NMR. Adjusting optimal parameters for carbon NMR. Explaining signal multiplicity of deuterated organic solvents. Peak picking (ppm) of spectra.

8th week Excercising 1H NMR signal acquisition and processing one by one.

9th week Excercising 13C NMR signal acquisition and processing one by one.

10th week Excercising 1H NMR signal acquisition and processing one by one.

11th week Excercising 13C NMR signal acquisition and processing one by one.

12th week Excercising 1H NMR and 13C NMR signal acquisition and processing one by one.
13th week Excercising 1H NMR and 13C NMR signal acquisition and processing one by one.

14th week Excercising 1H NMR and 13C NMR signal acquisition and processing one by one.

Requirements:
- for a signature
 Attendance of laboratory exercises is compulsory.
 A student must attend the practice classes and may not miss more than two times during the semester. In case a student does so, the subject will not be signed and the student must repeat the course. A student can’t make up any practice with another group. Attendance at practice classes will be recorded by the practice leader. Being late is equivalent with an absence. In case of further absences, a medical certificate needs to be presented. Missed practice classes should be made up for at a later date, to be discussed with the tutor. Active participation is evaluated by the teacher in every class. If a student’s behaviour or conduct doesn’t meet the requirements of active participation, the teacher may evaluate his/her participation as an absence because of the lack of active participation in class.
- for a grade
 The course ends in an examination. The student must produce an 1H NMR spectrum with quantitative integrals and a 13C NMR spectrum with peak list within one hour time limit, without external help. They may ask for tutor help, however this may result in lowering their mark.
 - the result of the practical examination may be 1 (failed) 2,3,4,5 (passed)

Person responsible for course: Dr. Batta Gyula, professor, PhD

Lecturer: Dr. Batta Gyula, professor, PhD

Title of course: Plastics and Processing III.
Code: TTKBE1214_EN
ECTS Credit points: 3

Type of teaching, contact hours
- lecture: 2 hours/week
- practice: -
- laboratory: -

Evaluation: exam

Workload (estimated), divided into contact hours:
- lecture: 28 hours
- practice: -
- laboratory: -
- home assignment: 32 hours
- preparation for the exam: 30 hours
Total: 90 hours

Year, semester: 4th year, 1st semester

Its prerequisite(s): TTKBE0611_EN

Further courses built on it: -
Topics of course

Literature

Compulsory:

Recommended:

Course objective/intended learning outcomes

a) Knowledge
- He/She knows the basic principles, the planning and controlling options in technology of chemical processes and industrial tasks.
- He/She knows the properties of the most important chemicals, their productions and applications.

b) Abilities
- He/She understands and able to describe the elements of industrial and technological units, their operations including the connectivity options.
- He/She is capable on conducting basic chemical engineering tasks.

c) Attitude
- He/She makes effort to improve and apply the practical methods with new results and experiences.
- During everyday work and installation of new technologies he/she always concerned about sustainable development.

d) Autonomy and responsibility
- He/She tends to establish new solutions and technologies.
- Following directions he/she can work without supervision considering all quality and safety rules.

Schedule:

1st week
The basics of the processing of different plastics. Classification of plastic types.

2nd week
Mixing and homogenization of plastics.

3rd week
Theory of extrusion, technological aspects. Extrusion of different product types (rod, tube, sheet, hollow bodies).

4th week
Calandering, tube blowing, dry melt and wet spinning.

5th week

6th week
Compression molding with pressure or vacuum. Available plastics, formed products.

7th week
Thermoforming technologies (stretching, deep-drawing, pressure and vacuum forming).

8th week
Forming methods without pressure (casting, die casting, centrifugal casting, rotational molding, dip-coating).

9th week
Plastic coatings on different materials: metals, glass, plastics.

10th week
Plastic foams, foaming. Foaming agents and methods.

11th week
Basics of composites. Reinforcing fiber types, physico-chemical background.

12th week
Fixation of plastic components: adhesive bonding, screwing, welding, clamp joint.

13th week
Liquid resin processes.

14th week
Decorating and finishing.

Requirements:
- for a signature
Attendance at lectures is recommended, but not compulsory. Active participation is rewarded by the teacher in every class.

Students have to submit an essay about a given topic as scheduled minimum on a sufficient level.
During the semester there is one end-term test in the 15th week for an offered grade (optional).
Students have to sit for the tests.

- for a grade
The course ends in an examination. Based on the average of the grades of the essay and the examination, the exam grade is calculated as an average of them:
The minimum requirement for the end-term test and the examination respectively is 50%. Based on the score of the test, the grade for the test and the examination is given according to the following table:

<table>
<thead>
<tr>
<th>Score</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-49</td>
<td>fail (1)</td>
</tr>
<tr>
<td>50-61</td>
<td>pass (2)</td>
</tr>
<tr>
<td>62-74</td>
<td>satisfactory (3)</td>
</tr>
<tr>
<td>75-87</td>
<td>good (4)</td>
</tr>
<tr>
<td>88-100</td>
<td>excellent (5)</td>
</tr>
</tbody>
</table>

If the score the test is below 50, students can take a retake test in conformity with the Education and Examination Rules and Regulations.

-an offered grade:
it may be offered for students if the grade of both the essay and the end-term test is at least satisfactory (3). The offered grade is the average of them.

Person responsible for course: Dr. Dávid Rácz, assistant professor, PhD

Lecturer: Dr. Dávid Rácz, assistant professor, PhD

Title of course: Chemical Technology III.
Code: TTKBE1117_EN
ECTS Credit points: 3

Type of teaching, contact hours
- lecture: 2 hours/week
- practice: -
- laboratory: -

Evaluation: exam

Workload (estimated), divided into contact hours:
- lecture: 28 hours
- practice: -
- laboratory: -
- home assignment: 22 hours
- preparation for the exam: 40 hours
Total: 90 hours

Year, semester: 4th year, 1st semester

Its prerequisite(s): TTKBE1112_EN, TTKBL1112_EN

Further courses built on it: -

Topics of course

Silicate industry: processes and products of glass, ceramics and enamell.
Micromiological industries: types, conditions and products of fermentation.
Production of yeast, ethanol, vinegar, antibiotics and beer. Production of sugar and vegetable-oil, usage of byproducts.

Literature

Compulsory:

Recommended:
- Muhlynov I.: Chemical Technology I-II.

Course objective/intended learning outcomes

a) Knowledge
- He/She knows the basic principles, the planning and controlling options in technology of chemical processes and industrial tasks.
- He/She knows the chemical methods for measurements or analysis, their principles and instrumental background, and their applicabilities.

b) Abilities
- He/She is able to apply those directives that necessary to operate instruments and control processes in a safe, cost effective way as well as avoid any problems causing health issues.
- He/She is able to follow and control chemical processes and other technological steps concerning the quality management and quality control.

c) Attitude
- He/She makes effort to improve and apply the practical methods with new results and experiences.

d) Autonomy and responsibility
- Following directions he/she can work without supervision considering all quality and safety rules.
- He/She can manage work and worker resources, follow and control the instruments and measuring units.

Schedule:

1st week
Biofuels, bioethanol production in the industry

2nd week
Biofuels, biodiesel production in the industry

3rd week
Yeast and acetic acid production

4th week
Manufacturing beer

5th week
Uses of renewable energy sources

6th week
Manufacturing sugar

7th week
Paper industry

8th week
Classification of explosive materials

9th week
Nanotechnology

10th week
Polyurethanes

11th week
Nuclear energy

12th week
Manufacturing wine and champagne

13th week
Silicate industry, production of cement

14th week
Ceramic industry
Requirements:
- for a signature

Attendance at lectures is recommended, but not compulsory.
During the semester there is one test: the end-term test in the 15th week. Students have to sit for the test
- for a grade

The exam grade is calculated by the result of end-term test.
The minimum requirement for end-term test is 50%. Based on the score of the test separately, the grade for the test is given according to the following table:

<table>
<thead>
<tr>
<th>Score</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-49</td>
<td>fail (1)</td>
</tr>
<tr>
<td>50-59</td>
<td>pass (2)</td>
</tr>
<tr>
<td>60-74</td>
<td>satisfactory (3)</td>
</tr>
<tr>
<td>75-89</td>
<td>good (4)</td>
</tr>
<tr>
<td>90-100</td>
<td>excellent (5)</td>
</tr>
</tbody>
</table>

If the score of the test is below 50, students can take a retake test in conformity with the EDUCATION AND EXAMINATION RULES AND REGULATIONS.

-an offered grade:

It may be offered for students if the grade is at least pass (2).

Person responsible for course: Dr. Lajos Nagy, associate professor, PhD
Lecturer: Dr. Lajos Nagy, associate professor, PhD

Title of course: Seminar in Organic Chemistry I.
Code: TTKBG0311_EN
ECTS Credit points: 1

Type of teaching, contact hours
- lecture: -
- practice: 1 hour/week
- laboratory: -

Evaluation: term mark

Workload (estimated), divided into contact hours:
- lecture: -
- practice: 14 hours
- laboratory: -
- home assignment: 14 hours
- preparation for the exam: -
Total: 28 hours

Year, semester: 1st year, 2nd semester

Its prerequisite(s): General Chemistry I. (lecture) TTKBE0101_EN

Further courses built on it: -

Topics of course
- Review the basic of organic chemistry basics
- Types and theories of chemical bonds
- Review the acid-base theories
- Basic concepts of isomerism and stereochemistry.
- Classification of organic chemical reactions.
- Functional groups and the basics of organic nomenclature.
- The structure, nomenclature, synthesis and reactions of alkanes, alkenes, alkenes, alkynes, mono- and polycyclic, homo- and heteroaromatic hydrocarbons.

Literature

Compulsory:
6. Course material, concept and task collection for lectures, seminars in the e-learning system.

Recommended:

Course objective/intended learning outcomes

a) Knowledge
He/She knows the basic concepts and theories which are necessary to understand and interpret structure and reactivity of organic compounds (chemical bond, hybridization, resonance theory, isomerism) He/she knows the structure, physical and chemical properties and synthetic methods of saturated, unsaturated and aromatic hydrocarbons and He/She can apply these knowledges to solve chemical problems.

b) Abilities
- He/she knows and is able to apply his/her knowledge to solve simple tasks on the field of hydrocarbons.
- He/she is able to participate in professional communication on the field of structure, and chemical transformation of hydrocarbons.
- He/she is able to expand and/or develop his/her knowledge from the natural products.

c) Attitude
- He/she is open to getting new, scientifically proven knowledge on the subject, but to reject unsubstantiated or possibly misleading claims

d) Autonomy and responsibility
- He/she is able to independently perform the tasks of the course with professional guidance, and he/she can interpret and evaluate of the results obtained.
Schedule:

1st week
Comparison and exercise of representation of organic compounds. Determination of the order (primary, secondary, tertiary, quaternary) of carbon atoms in compounds.

2nd week
The use of resonance structures and hybridization in the interpretation of the structure of organic compounds. Interpretation of electron shift or delocalization phenomena (inductive and mesomeric effect, conjugation and hyperconjugation).

3rd week
Exercise the recognition of organic compounds and functional groups.

4th week
Use of the substitutive and functional class nomenclature in naming hydrocarbons. Practice the names of alkyl groups.

5th week
Exercise of the most important types of organic chemical reactions, recognition of reactive particles (electrophile, nucleophile, radical).

6th week
Exercise the concept of constitution, conformation and configuration. Recognition and differentiation of enantiomers and diastereomers.

7th week
Practice the representation and projection of the organic molecules. The absolute configuration of chiral compounds, Fischer and Cahn-Ingold-Prelog convention.

8th week

9th week
Methods for the synthesis of alkenes, cycloalkenes. Addition reactions of alkenes, regioselectivity and its interpretation in addition reactions.

10th week
Addition reactions of conjugated dienes, partial and complete addition. 1,2- and 1,4- addition and its interpretation based on kinetic and thermodynamic control. Diels-Alder cycloaddition.

11th week
Synthesis of alkynes. Chemical transformations of alkynes: C-H acidity, addition reactions and their significance. The role of acetylene in the chemical industry, coal-based chemical industry.

12th week
Exercise the criteria of aromaticity. Interpretation of aromatic electrophilic substitution reactions.

13th week
The S_{EA} reactions of substituted benzene derivatives –the reactivity and regioselectivity. Classification of substituents and interpretation of their effect on reactivity and regioselectivity.

14th week
Reactions of aromatic hydrocarbons containing alkyl residues, interpretation of the stability of benzyl-type reactive intermediates. Most important representatives of polycyclic aromatic hydrocarbons.

Requirements:
The course is recommended in parallel with the lecture Organic Chemistry I. (TTKBE0301_EN).

Evaluation:
Attendance at seminars is **compulsory**. A student may not miss the seminar more than three times during the semester. In case of further absences, a medical certificate needs to be presented. In case a student does not do this, the subject will not be signed, and the student must repeat the course. The performance of the students in the seminar is verified 4 times in the form of written tests.

for a grade

The term mark is based on the average of the grades of written tests. The minimum requirement for the written tests respectively is 50%. Based on the score of the tests separately, the grade for the tests is given according to the following table:

<table>
<thead>
<tr>
<th>Score</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-49</td>
<td>fail (1)</td>
</tr>
<tr>
<td>50-65</td>
<td>pass (2)</td>
</tr>
<tr>
<td>66-80</td>
<td>satisfactory (3)</td>
</tr>
<tr>
<td>80-89</td>
<td>good (4)</td>
</tr>
<tr>
<td>90-100</td>
<td>excellent (5)</td>
</tr>
</tbody>
</table>

Person responsible for course: László Dr. Juhász, associate professor, PhD, Habil.

Lecturer: László Dr. Juhász, associate professor, PhD, Habil.

Title of course: Seminar in Organic Chemistry II.
Code: TTKBG0312_EN
ECTS Credit points: 1

Type of teaching, contact hours
- lecture: -
- practice: 1 hour/week
- laboratory: -

Evaluation: term mark

Workload (estimated), divided into contact hours:
- lecture: -
- practice: 14 hours
- laboratory: -
- home assignment: 14 hours
- preparation for the exam: -
Total: 28 hours

Year, semester: 2nd year, 1st semester

Its prerequisite(s): Inorganic Chemistry I. (lecture) TTKBE0201_EN, Organic Chemistry I. (lecture and sem.) TTKBE0301_EN, Physical Chemistry I. (lecture) TTKBE0401_EN

Further courses built on it: -

Topics of course

Overview and exercising of the structure, physical, chemical properties of hydrocarbons
possessing heteroatoms as halogenated hydrocarbons, organometallic derivatives, alcohols, phenols, ethers and their thio analogues; amines, nitro derivatives, diazonium salts, aldehyde, ketones, carboxylic acids and their derivatives, derivatives of carbonic acid

Literature

Compulsory:
14. Course material, concept and task collection for lectures, seminars in the e-learning system.

Recommended:

Course objective/intended learning outcomes

a) Knowledge
- He/she knows the structure, physical and chemical properties and synthetic methods of the most important organic compounds possessing heteroatoms (halogenated hydrocarbons, organometallic derivatives, alcohols, phenols, ethers and their thio analogues; amines, nitro derivatives, diazonium salts, aldehyde, ketones, carboxylic acids and their derivatives, derivatives of carbonic acid). He/she is able to apply his/her knowledge to solve simple tasks on the field of this compounds. He/she knows the application and practical significance of these derivatives, and their applicabilities

b) Abilities
- He/she knows and is able to apply his/her knowledge to solve simple tasks on the field of hydrocarbons.
- He/she is able to participate in professional communication on the field of structure, and chemical transformation of hydrocarbons.
- He/she is able to expand and/or develop his/her knowledge from the natural products.

c) Attitude
- He/she is open to getting new, scientifically proven knowledge on the subject, but to reject unsubstantiated or possibly misleading claims

d) Autonomy and responsibility
- He/she is able to independently perform the tasks of the course with professional guidance, and he/she can interpret and evaluate of the results obtained.

Schedule:
1st week
Practice the classification and synthesis of halogenated hydrocarbons.

2nd week
Practice the elimination and substitution reactions of halogenated hydrocarbons.

3rd week
Practice the preparation of Grignard compounds and their application.

4th week
Preparation of alcohols, ethers, phenols and their thioanalogues. The acid-base properties of alcohols, phenols and their thioanalogues

5th week
Practice the chemical properties of alcohols and phenols, ethers and their thioanalogues.

6th week
Practice the classification of amines and characterization of their bonding systems. Practice the synthetic methodologies of aliphatic and aromatic amines, industrial methods.

7th week
Practice the basicity and chemical transformations of the amines (alkylation, acylation, sulfonamide formation, reaction with nitric acid). Reactions of aromatic rings of anilines.

8th week
Practice the preparation of nitro compounds, diazonium salts. Reactions and practical significance of aromatic diazonium salts.

9th week
Practice the synthetic possibilities of aldehydes and ketones and an overview of their acid-base properties.

10th week
Practice the transformations of aldehydes and ketones. Reactions of the carbonyl group (nucleophilic addition reactions with O-, S-, N- and C-nucleophiles) and reactions on the α-carbon atoms.

11th week
Practice the classification and preparation of carboxylic acids and their derivatives.

12th week
Practice the acid-base properties of carboxylic acids and its derivatives. The acyl nucleophilic substitution and the reductive transformations of carboxylic acid derivatives, transformation of their carbon skeleton.

13th week
Chemical properties of β-dicarboxylic acids, malonester synthesis.

14th week
Chemical properties of β-oxocarboxylic acid derivatives, acetoacetic ester and cyanoacetic ester syntheses.

Requirements:
The course is recommended in parallel with the lecture Organic Chemistry II (TTKB0302_EN).
Evaluation:
- for a signature
Attendance at seminars is compulsory. A student may not miss the seminar more than three times during the semester. In case of further absences, a medical certificate needs to be presented. In case a student does not do this, the subject will not be signed, and the student must
repeat the course.
The performance of the students in the seminar is verified 4 times in the form of written tests.

for a grade
The term mark is based on the average of the grades of written tests.
The minimum requirement for the written tests respectively is 50%. Based on the score of the tests separately, the grade for the tests is given according to the following table:

<table>
<thead>
<tr>
<th>Score</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-49</td>
<td>fail (1)</td>
</tr>
<tr>
<td>50-65</td>
<td>pass (2)</td>
</tr>
<tr>
<td>66-80</td>
<td>satisfactory (3)</td>
</tr>
<tr>
<td>80-89</td>
<td>good (4)</td>
</tr>
<tr>
<td>90-100</td>
<td>excellent (5)</td>
</tr>
</tbody>
</table>

Person responsible for course: László Dr. Juhász, associate professor, PhD, dr. habil.

Lecturer: László Dr. Juhász, associate professor, PhD, dr. habil

Title of course: Advanced seminar in organic chemistry
Code: TTKBG0313_EN
ECTS Credit points: 2

Type of teaching, contact hours
- lecture: -
- practice: 2 hours/week
- laboratory: -

Evaluation: term mark

Workload (estimated), divided into contact hours:
- lecture: -
- practice: 28 hours
- laboratory: -
- home assignment: 21 hours
- preparation for the exam: -
Total: 49 hours

Year, semester: 2nd year, 2nd semester

Its prerequisite(s): Organic Chemistry II. (lect. and sem.) TTKBE0302_EN

Further courses built on it: -

Topics of course
The aim of the course is to enable students to master the complex organic chemistry problem solving skills, and to be able to apply the knowledge acquired in basic courses in solving complex synthetic tasks and designing syntheses.

Literature

Compulsory:
22. Course material, concept and task collection for lectures, seminars in the e-learning system.

Recommended:

Course objective/intended learning outcomes

a) Knowledge
- He/she knows the structure, physical and chemical properties organic compounds and he/she is able to apply his/her knowledge to solve complex tasks on the field of this compounds. He/she knows the application and practical significance of these derivatives, and their applicabilities.

b) Abilities
- He/she is able to participate in professional communication on the field of structure, and chemical transformation of this field.
- He/she is able to expand and/or develop his/her knowledge from the natural products.

c) Attitude
- He/she is open to getting new, scientifically proven knowledge on the subject, but to reject unsubstantiated or possibly misleading claims.

d) Autonomy and responsibility
- He/she is able to independently perform the tasks of the course with professional guidance, and he/she can interpret and evaluate of the results obtained.

Schedule:

1st week
The basics of retrosynthetic analysis, the concept of synthones and retrones. Types of disconnections. Interconversion of functional groups. The use of the method in the exploration of simple synthetic possibilities for compounds.

2nd week
Retrosynthetic analysis of aromatic compounds. Use of the directing and activating/deactivating effects to form the appropriate substituent pattern.

3rd week

4th week
Methods for forming C-C bond II. Base catalyzed conversions II. (malonic ester and acetoacetic ester syntheses).
Requirements:
The course is recommended in parallel with the lecture Organic Chemistry III. (TTKB0303_EN).

- **for a signature**
 - Attendance at lectures is recommended, but not compulsory.
 - Attendance at seminars is compulsory. A student may not miss the seminar more than three times during the semester. In case of further absences, a medical certificate needs to be presented. In case a student does not do this, the subject will not be signed, and the student must repeat the course.

- **for a grade**
 - The course ends in an examination.
 - The exam grade is the result of the written exam.
 - The minimum requirement for the examination respectively is 50%. The grade for the written exam is given according to the following table:
 - Score: 0-49 Grade: fail (1)
 - Score: 50-62 Grade: pass (2)
 - Score: 63-75 Grade: satisfactory (3)
 - Score: 76-87 Grade: good (4)
 - Score: 88-100 Grade: excellent (5)
 - If the score of any test below 50, students can take a retake test in conformity with the EDUCATION AND EXAMINATION RULES AND REGULATIONS.

Person responsible for course: László Dr. Juhász, associate professor, PhD, dr. habil.

Lecturer: László Dr. Juhász, associate professor, PhD, dr. habil.
<table>
<thead>
<tr>
<th>Name</th>
<th>Dr. István Árpád</th>
</tr>
</thead>
<tbody>
<tr>
<td>Position</td>
<td>Assistant Professor</td>
</tr>
</tbody>
</table>
| Academic career | doctoral qualification: Pannon University, Doctoral School of Chemical Engineering and Material Sciences, 2013
Doctorate, subject: Technical Thermodynamics
Undergraduate degree, subject: Chemical engineering MSc for Heavy Chemical Industry, University of Chemical Industry of Veszprém, 1985 |
| Employment | Assistant Professor, University of Debrecen, Department of Applied Chemistry, from 2014 |
| Research and development projects over the last 5 years | Creation of technical expert opinion about a seasonal thermal energy storage equipment in Veszprém, Hungarian Chamber of Engineers, 2018 |
| Industry collaborations over the last 5 years | 1) The thermal disposal of hazardous waste. Supervision for Master thesis, MOL Petrochemicals Ltd., Tiszaújváros
2) Investigation of operating and design of dust separate cyclone in HDPE-1 Plant, Supervision for Master thesis, MOL Petrochemicals Ltd., Tiszaújváros |
| Patents and proprietary rights | - |
| Important publications over the last 5 years | Selected recent publications from the total 18 numbers:
1) Árpád, I.: Advantages of using direct contact feedwater heaters in nuclear power plants, EMT OGET 2018 Twenty-sixth International Conference on Mechanical Engineering, Marosvásárhely, Romania, Conference paper, ISSN 2068-1267, pp.20-22, 2018
2) Árpád, I., Deák, Gy., Kéki, S.: Trends in the chemical conditioning for the corrosion protection of water-steam cycle power plant, EMT OGET 2015 Twenty-third International Conference on Mechanical Engineering, Csiksomlyó, Romania, Conference paper, ISSN 2068-1267, pp.31-33, 2015
<p>| Activities in specialist bodies over the last 5 years | 1) Public Body of Hungarian Academy of Sciences, Class of Chemical Sciences, |</p>
<table>
<thead>
<tr>
<th>Name</th>
<th>Gábor Balogh</th>
</tr>
</thead>
<tbody>
<tr>
<td>Position</td>
<td>Material Science, Fracture Mechanics</td>
</tr>
<tr>
<td>Academic career</td>
<td>Metallurgy engineer (UM, 2002)</td>
</tr>
<tr>
<td></td>
<td>Mechanical engineer (UM, 2007)</td>
</tr>
<tr>
<td>Employment</td>
<td>Professor associate, UD, Faculty of Mechanical Eng.– from 2011</td>
</tr>
<tr>
<td>Research and development projects over the last 5 years</td>
<td>-</td>
</tr>
<tr>
<td>Industry collaborations over the last 5 years</td>
<td>-</td>
</tr>
<tr>
<td>Patents and proprietary rights</td>
<td>-</td>
</tr>
</tbody>
</table>
| Important publications over the last 5 years | Selected recent publications from a total of approx. (give total number): 11
Author(s): Balogh Gábor, Szabó István, Lovadi Gyula Dávid
Title: Developing of Material Testing Methods at the Faculty of Engineering, Future Possibilities
Author(s): Balogh Gábor
Title: Recycling Possibilities of End Period Nuclear Fuel Cells
Any other information: In: Bodzás Sándor, Mankovits Tamás (szerk.) |

Befoglaló mű link(ek): Teljes dokumentum
Könyvrészlet/Konferenciaközlemény/Tudományos [3302473]

Author(s): Balogh Gábor, Varga Emil
Title: Élelmiszermérnöki alapszak – OKJ modulok megfeleltethetősége

Befoglaló mű link(ek): Egyéb URL
Könyvrészlet/Konferenciaközlemény/Tudományos [2938609]

Author(s): Balogh Gábor, Mankovits Tamás, Manó Sándor, Tóth László
Title: Titán habok gyártási technológiájának áttekintése

Befoglaló mű link(ek): Egyéb URL
Könyvrészlet/Konferenciaközlemény/Tudományos [2938610]

Author(s): Huri Dávid, Fazekas Lajos, Balogh Gábor
Title: Lemorzsolódó hallgatók a gépészmérnöki alapszakon, részismereti tudás beszámítása az OKJ képzésbe

<table>
<thead>
<tr>
<th>Author(s):</th>
<th>Mankovits Tamás, Varga Tamás Antal, Manó Sándor, Balogh Gábor, Kocsis Imre, Budai István, Gábora András, Tóth László</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title:</td>
<td>Fémhabok modellezési kérdései</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Author(s):</th>
<th>Pálinkás Sándor, Balogh Gábor, Győnyörű Attila</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title:</td>
<td>Számítógéppel segített gyártás (CAM)</td>
</tr>
<tr>
<td>Any other information:</td>
<td>Debrecen: Debreceni Egyetem Műszaki Kar, 2015.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Author(s):</th>
<th>Varga Tamás Antal, Mankovits Tamás, Kocsis Imre, Budai István, Balogh Gábor, Gábora András, Kozma István, Manó Sándor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title:</td>
<td>Fémhabok struktúrájának elemzése és modellezése = Structural Analysis and Modelling of Metal Foams</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Author(s):</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Title:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Any other information:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Author(s): Mankovits T, Budai I, Balogh G, Gábora A, Kozma I, Varga T, Manó S, Kocsis I
Title: Structural analysis and its statistical evaluation of a closed-cell metal foam
Any other information: INTERNATIONAL REVIEW OF APPLIED SCIENCES AND ENGINEERING 5:(2) pp. 135-143. (2014)
Link(ek): DOI, Google scholar
Folyóiratcikk/Szakcikk/Tudományos [2793412]

Author(s): Mankovits Tamás, Budai István, BALOGH Gábor, Gábora András, Kozma István, Varga Tamás Antal, Manó Sándor, Kocsis Imre, Tóth László
Title: STRUCTURAL MODELLING OF CLOSED-CELL METAL FOAMS
Könyvrészlet/Konferenciaközlemény/Tudományos [2774571]

Activities in specialist bodies over the last 5 years

Example sheet of staff handbook

<p>| Name | Terész Barna PhD |</p>
<table>
<thead>
<tr>
<th>Position</th>
<th>Senior lecturer</th>
</tr>
</thead>
</table>
| **Academic career** | Lecturer (University of Debrecen, Department of Biochemistry, 2004-2009)
Senior lecturer (University of Debrecen, Department of Genetics and Applied Microbiology, 2010-) |
| | Doctoral qualification: PhD, University of Debrecen, 2006.
Doctorate, subject: Structural/functional studies on xenobiotic degrading flavoenzymes.
University studies:
MSc in Chemistry, Kossuth Lajos University, Debrecen, 1986. |
Postdoctoral Research Fellow - Department of Biochemistry, University of Leicester, England (1998–2003) |
| | Research Fellow, Department of Biological and Nutritional Sciences, University of Newcastle upon Tyne, England 1996-1997 (12 month)- Royal Society Fellowship
Research Fellow, Department of Bioinorganic Chemistry, University of Newcastle upon Tyne, England 1995 (12 month)
EC CHOST Fellowship |
| Research and development projects over the last 5 years | Name of project or research focus:
GINOP-2.3.2-15-2016-00008 : Chemistry for improving the quality of life.
Period and any other information: 2016-2020
Partners, if applicable:
Amount of financing: |
| Industry collaborations over the last 5 years | Project title:
Partners: |
<p>| Patents and proprietary rights | Title (Year) |</p>
<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Title</th>
<th>Publisher, place of publication, date of publication, volume, issue, page numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fizil Á., Gáspári Z., Barna T., Marx F. and Batta Gy.,“</td>
<td>“Invisible” Constrained Cold and Heat Unfolding, CEST-NMR Experiments, and Molecular Dynamics Calculations.,</td>
<td></td>
</tr>
</tbody>
</table>
Activities in specialist bodies over the last 5 years

Organisation - Role – Period

Membership without a specific role need not be mentioned.

Name	**Prof. Dr. Gyula Batta**
Position | Professor, Structural Chemistry and Biology

Academic career

- Initial academic appointment (UD, 1980)
- Habilitation (UD, 2002)
- Doctoral qualification (MTA DSc., 2001)
- Doctorate, Chemistry (MTA CSc. 1987)
- MSc., physics (Institution, 1976)

Employment

Professor - UD – from 2007

Research and development projects over the last 5 years

- **Name of project or research focus:** Antifungal proteins: structure and dynamics, Glycopeptide Antibiotics
- **2013-2018**
- **Partners, if applicable:** Innsbruck Medical University, Institute of New Antibiotics, Moscow
- **Amount of financing:** 33M HUF (NKFI 110821) , ca. 150M HUF(GINOP)

Industry collaborations over the last 5 years

- **Project title:** NMR Structure determination
- **Partners:** TEVA, CF Pharma, GLYCOM

Patents and proprietary rights

N/A

Important publications over the last 5 years

Selected recent publications from a total of approx. (200):

1. Anna Huber, Dorottya Hajdu, Doris Bratschun-Khan, Zoltán Gáspári, Mihayl Varbanov, Stéphanie Philippot, Ádám Fizil, András Czajlik, Zoltán Kele, Christoph Sonderegger, László Galgóczy, Andrea Bodor, Florentine Marx, **Gyula Batta**

 New antimicrobial potential and structural properties of PAFB: a cationic, cysteine-rich protein from Penicillium chrysogenum Q176

2. Sándor Boros, Zoltán Gáspári, **Gyula Batta**

 Accurate NMR determinations of proton–proton distances

Activities in specialist bodies over the last 5 years

<table>
<thead>
<tr>
<th>Name</th>
<th>Gábor Bellér PhD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Position</td>
<td>Assistant Professor, UD</td>
</tr>
<tr>
<td>Academic career</td>
<td>doctoral qualification: PhD, UD, Hungary, 2016</td>
</tr>
<tr>
<td>Undergraduate degree, subject: Chemistry-english-hungarian special translator MSc, 2010</td>
<td></td>
</tr>
<tr>
<td>Employment</td>
<td>Assistant Professor, 2016-, UD</td>
</tr>
<tr>
<td>Junior Assistant Professor, 2014-2016, UD</td>
<td></td>
</tr>
<tr>
<td>Junior Research Fellow, 2013-2014, MTA-DE Homogeneous Catalysis and Reaction Mechanisms Research Group</td>
<td></td>
</tr>
<tr>
<td>Visiting young researcher – University of Cádiz, 2010, 2 months</td>
<td></td>
</tr>
<tr>
<td>Research and development projects over the last 5 years</td>
<td>Name of project or research focus: TÁMOP-4.2.2.A-11/1/KONV,</td>
</tr>
</tbody>
</table>

| EU project: Basic targeted chemical and biological research for the elimination of environmentally hazardous chemicals Period and any other information: 2013-2015
Partners, if applicable:
Amount of financing:
Name of project or research focus: GINOP-2.3.2-15-2016-00008,
EU project: Chemistry for better life: strategic R&D center at the University of Debrecen.
Period and any other information: 2016-2020
Partners, if applicable:
Amount of financing:
Industry collaborations over the last 5 years
Patents and proprietary rights
Important publications over the last 5 years
Selected recent publications from a total of approx. (give total number): 7
1. Mária Szabó, József Kalmár, Tamás Ditrói, Gábor Bellér, Gábor Lente, Nina Simic, István Fábián
Equilibria and kinetics of chromium(VI) speciation in aqueous solution – a comprehensive study from pH 2 to 11
2. Ferenc, Najóczki, Gábor Bellér, Mária Szabó, István Fábián
Substituent effect on the N-oxidation of 1,10-phenanthroline derivatives by peroxomonosulfate ion
3. Gábor Bellér, Gábor Lente, István Fábián
Kinetics and mechanism of the autocatalytic oxidation of bis(terpyridine)iron(II) by peroxomonosulfate ion (Oxone) in acidic medium
4. Mária Szabó, Gábor Bellér, József Kalmár, István Fábián
The kinetics and mechanism of complex redox reactions in aqueous solution: The tools of the trade
5. Gábor Bellér, Mária Szabó, Gábor Lente, István Fábián |
Formation of 1,10-phenanthroline-N,N'-dioxide under mild conditions: the kinetics and mechanism of the oxidation of 1,10-phenanthroline by peroxomonosulfate ion (Oxone)

Journal of Organic Chemistry, 2016, 81, 5345-5353

<table>
<thead>
<tr>
<th>Activities in specialist bodies over the last 5 years</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Attila Bényei</th>
</tr>
</thead>
<tbody>
<tr>
<td>Position</td>
<td>Associate Professor, teaching physical chemistry, X-ray diffraction, polymorphism</td>
</tr>
<tr>
<td>Academic career</td>
<td>Habilitation (University of Debrecen, 2011)</td>
</tr>
<tr>
<td></td>
<td>Doctor of University (University of Debrecen, 1990)</td>
</tr>
<tr>
<td></td>
<td>PhD in Chemistry (University of Debrecen, 1995)</td>
</tr>
<tr>
<td></td>
<td>Chemist, English translator (University of Debrecen, 1986)</td>
</tr>
<tr>
<td>Employment</td>
<td>Head of Laboratory for X-ray Diffraction, University of Debrecen, from 1995</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Research and development projects over the last 5 years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name of project or research focus: Single crystal X-ray diffraction studies. Determination of solid state structures of organic and organometallic compounds.</td>
</tr>
<tr>
<td>GINOP-2.3.2-15-2016-00008 and GINOP-2.3.3-15-2016-00004, Participant scientist.</td>
</tr>
<tr>
<td>Period and any other information: 2015-2019</td>
</tr>
<tr>
<td>Partners, if applicable:</td>
</tr>
<tr>
<td>Amount of financing:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Industry collaborations over the last 5 years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project title: Single crystal X-ray diffraction studies Partners: Alkaloida Research and Development Ltd.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Patents and proprietary rights</th>
</tr>
</thead>
<tbody>
<tr>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Important publications over the last 5 years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selected recent publications from a total of approx. (110):</td>
</tr>
<tr>
<td>Author(s): Buglyó P., Kacsir I., Kozsup M., Nagy I., Nagy S., Bényei A.C., Kováts É., Farkas E.</td>
</tr>
<tr>
<td>Title: Tuning the redox potentials of ternary cobalt(III) complexes containing various hydroxamates</td>
</tr>
<tr>
<td>Any other information:</td>
</tr>
<tr>
<td>Publisher, place of publication, date of publication or name of periodical, volume, issue, page numbers</td>
</tr>
<tr>
<td>2. Author(s): Buglyo P, Parajdi-Losonczi PL, Benyei AC,</td>
</tr>
</tbody>
</table>
Lihi N, Biro L, Farkas E
Title: Versatility of Coordination Modes in Complexes of Monohydroxamic Acids with Half-Sandwich Type Ruthenium, Rhodium, Osmium and Iridium Cations
Any other information:
Publisher, place of publication, date of publication or name of periodical, volume, issue, page numbers

Title: Efficient stereochemical communication in phosphine-amine palladium-complexes: exploration of N-substituent effects in coordination chemistry and catalysis
Any other information:
Publisher, place of publication, date of publication or name of periodical, volume, issue, page numbers

4. Author(s): Matyuska F, Szorcsik A, May NV, Dancs Á, Kováts É, Bényei A, Gajda T
Title: Tailoring the local environment around metal ions: A solution chemical and structural study of some multidentate tripodal ligands
Any other information:
Publisher, place of publication, date of publication or name of periodical, volume, issue, page numbers

5. Author(s): Illyés TZ, Balla S, Bényei A, Kumar AA, Timári I, Kövér KE, Szilágyi L
Title: Exploring the Syntheses of Novel Glycomimetics. Carbohydrate Derivatives with Se-S- or Se-Se- Glycosidic Linkages
Any other information:
Publisher, place of publication, date of publication or name of periodical, volume, issue, page numbers

6. Author(s): Rodríguez-Rodríguez A, Regueiro-Figueroa M, Esteban-Gómez D, Tripier R, Tircsó G, Kálmán FK, Bényei AC, Tóth I, de Blas A, Rodríguez-Blas T, Platas-Iglesias C
Title: Complexation of Ln3+ Ions with Cyclam Dipicolinates: A Small Bridge that Makes Huge
Differences in Structure, Equilibrium, and Kinetic Properties

Any other information:

Publisher, place of publication, date of publication or name of periodical, volume, issue, page numbers

Activities in specialist bodies over the last 5 years

Name

Péter Buglyó

Position

associate professor

Academic career

<table>
<thead>
<tr>
<th>Year</th>
<th>Position</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>1989</td>
<td>research fellow</td>
<td>Dept. of Inorg. and Anal. Chem., L. Kossuth University</td>
</tr>
<tr>
<td>1990</td>
<td>research fellow</td>
<td>Hungarian Academy of Sciences</td>
</tr>
<tr>
<td>1996</td>
<td>postdoctoral fellow</td>
<td>University of British Columbia</td>
</tr>
<tr>
<td>2000</td>
<td>assistant professor</td>
<td>Dept. of Inorg. and Anal. Chem., L. Kossuth University</td>
</tr>
<tr>
<td>2006</td>
<td>associate professor</td>
<td>Dept. of Inorg. and Anal. Chem., University of Debrecen</td>
</tr>
</tbody>
</table>

Employment

<table>
<thead>
<tr>
<th>Year</th>
<th>Position</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>1989</td>
<td>research fellow</td>
<td>Dept. of Inorg. and Anal. Chem., L. Kossuth University</td>
</tr>
<tr>
<td>1990</td>
<td>research fellow</td>
<td>Hungarian Academy of Sciences</td>
</tr>
<tr>
<td>1996</td>
<td>postdoctoral fellow</td>
<td>University of British Columbia</td>
</tr>
</tbody>
</table>

M.Sc. Chemistry, 1989 Lajos Kossuth University, Debrecen

Ph.D. Chemistry, 1993 Lajos Kossuth University, Debrecen

Dr.Habil. Chemistry, 2003 University of Debrecen
<table>
<thead>
<tr>
<th>Year</th>
<th>Position</th>
<th>Department & University</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>assistant professor</td>
<td>Dept. of Inorg. and Anal. Chem., L. Kossuth University</td>
</tr>
<tr>
<td>2006</td>
<td>associate professor</td>
<td>Dept. of Inorg. and Anal. Chem., University of Debrecen</td>
</tr>
</tbody>
</table>

Research and development projects over the last 5 years

- Chemistry for better life: strategic R&D center at the university of Debrecen (DECHEM), 01/10/2016-30/09/2020, GINOP-2.3.2-15-2016-00008, 1.984 M HUF, subproject leader
- Synthesis and Characterization of Novel Ruthenium-Hydroxamate Complexes, OTKA 76142, 2009-2013 11.8 M HUF, principal investigator

Industry collaborations over the last 5 years

- Patents and proprietary rights
- Important publications over the last 5 years

Selected recent publications from a total of approx. 81:

| **Activities in specialist bodies over the last 5 years** | **Secretary of the Chemical Institute, University of Debrecen, 2010-2017**
Advisory Board member, COST CM1115, 2013-2016
Elected member of the Physical Chemistry Scientific Committee of the Hungarian Academy of Sciences 2014-2017
Elected secretary of the Physical Chemistry Scientific Committee of the Hungarian Academy of Sciences 2018- |

| **Name** | Pál Czeglédi |
| **Position** | associate professor, economics |
| **Academic career** | Initial academic appointment: University of Debrecen, 2005
Habilitation: University of Szeged, 2018 |
| **Employment** |
- MA in Economics, University of Debrecen, Faculty of Economics and Business Administration, 2002
- PhD in Economics, University of Debrecen, Faculty of Economics and Business Administration, 2007
- University of Debrecen, assistant researcher, 2005 – 2007
- University of Debrecen, University of Debrecen 2007 – 2008
- University of Debrecen, assistant professor, 2008 – 2011: University of Debrecen, associate professor, 2011- |
| **Research and development projects over the last 5 years** |
| **Industry collaborations over the last 5 years** | |
| **Patents and proprietary rights** | |
| **Important publications over the last 5 years** | Selected recent publications from a total of approx. 71:
Czeglédi Pál (2017): Productivity, Institutions, and Market Beliefs: Three Entrepreneurial
<table>
<thead>
<tr>
<th>Activities in specialist bodies over the last 5 years</th>
<th>chair of the Economic Subcommittee of the Debrecen Committee of Law and Economic Sciences of the Hungarian Academy of Sciences, 2017-</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Ágnes Dávid</td>
</tr>
<tr>
<td>Position</td>
<td>Assistant lecturer</td>
</tr>
<tr>
<td>Academic career</td>
<td></td>
</tr>
</tbody>
</table>
| doctoral qualification (Institution of Chemistry, University of Debrecen, 2017)
| Doctorate, subject: bioinorganic and coordination chemistry (Institution of Chemistry, University of Debrecen, 2017)
| Undergraduate degree, subject:
| chemist (University of Debrecen, 2012)
| chemistry and hungarian literature and grammar teacher (University of Debrecen, 2014) |
| Employment | assistant lecturer (Institution of Chemistry, University of Debrecen, from 2016 until now) |
| Research and development projects over the last 5 years | Name of project or research focus: –
| Period and any other information: –
| Partners, if applicable: –
| Amount of financing: – |
| Industry collaborations over the last 5 years | Project title: –
| Partners: – |
| Patents and proprietary rights | Title (Year):– |
| Important publications over the last 5 years | Selected recent publications from a total of approx. (give total number): 2 |
Author(s): Ágnes Dávid, Éva Tünde Hartman, Norbert Lihi, Imre Sóvágó and Katalin Várnagy

Title: Complex formation of nickel(II) and zinc(II) ions with the peptide fragments of rat amylin

Any other information: New J. Chem., 2018, 42, 8277. IF: 3,269 DOI: 10.1039/c8nj90036a

Author(s): Ágnes Dávid, Csilla Kállay, Daniele Sanna, Norbert Lihi, Imre Sóvágó, Katalin Várnagy

Title: Potentiometric and spectroscopic studies on the copper(II) complexes of rat amylin fragments. The anchoring ability of specific non-coordinating side chains

Any other information: Dalton Trans., 2015, 44, 17091–17099. IF: 4,197 DOI: 10.1039/c1dt10835b

Activities in specialist bodies over the last 5 years

<table>
<thead>
<tr>
<th>Name</th>
<th>György Deák PhD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Position</td>
<td>associate professor, deputy head of department, coordinator of Chemical Engineering BSc and MSc.</td>
</tr>
</tbody>
</table>

Academic career

Habilitation: University of Debrecen, 2006
PHD. University of Debrecen, Debrecen, 1997
“University doctor” Kossuth Lajos University, Debrecen, 1981

Undergraduate degree: Chemistry MSc, Debrecen, 1978
Kossuth Lajos Secondary Grammar School, Tiszafüred, 1972
Kiss Pál Elementary School, Tiszafüred, 1968

Employment

Associate professor, University of Debrecen, 2007-2007
Assistant professor, Lajos Kossuth University, 1993-2007
Visiting scientist, University of Akron, Akron OH, 1993-1995
Assistant research fellow, Lajos Kossuth University, 1991-1993
Head of the Pilot Plant, Biogal Pharmaceutical Works, Debrecen, 1989-1991
Visiting scientist, University of Brooklyn, NY, 1988-1989
Assistant research fellow, Lajos Kossuth University,
<table>
<thead>
<tr>
<th>Research and development projects over the last 5 years</th>
<th>1978-1981</th>
</tr>
</thead>
<tbody>
<tr>
<td>GINOP-2.3.2-15-2016-00041, Regional Workshop for Excellence in Materials Science, 2017-2020</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Industry collaborations over the last 5 years</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Water Technologies and Solutions, Tatabánya, 2018.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Patents and proprietary rights</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Majoros I.(20%), Nemes S. (17,5%), Elek S. (13,5%), Mihók M. (12%), Mihók Mné (12%), Zsuga M. (5%), Deák Gy. (5%), Sályi Sz. (5%): Method for the processing of organic mother liquor formed by the preparation of 7-amino-cephalosporic acid. Hungarian patent: HU 199 483 (1990)</td>
<td></td>
</tr>
<tr>
<td>2. Zahoránszky L. (10%), Deák Gy. (10%), Radnai F. (10%), Ockenfusz Cs. (27%), Vas Gy. (10%), Deák L. (10%), Móricz K. (3%), Varga I. (3%), Szőlősi J. (3%), Sipos S. (3%), Sarkadi F (2%), Jóna J. (2%), Szabó L. (2%), Juhász Z. (2%), Ágni Zs. (3%) : Method for the purification of waste solvents or solvent mixtures containing nitrous gases. Hungarian patent: HU 200 283 (1990)</td>
<td></td>
</tr>
<tr>
<td>4. Melczer I. (12%), Kéri V. (18%), Dr. Bálint J. (6%), Hőgye I. (4%), Dr. Nagy L. (13%), Dr. Deák Gy. (4%), Budai J. (11%), Tamás T. (9%), Miskolczy I. (13%), Lajter J. (3%), Széles L. (7%): Process for removing biomass from broth containing antibiotics Hungarian patent: HU 213 884 (1997)</td>
<td></td>
</tr>
<tr>
<td>5. Szányta T. (22%), Hanák L. (18%), Nagyné Árvai E. (14%), Kéri V. (13%), Marton Gy. (5%), Bálint J. (4%), Melczer I. (4%), Deák Gy. (3%), Karácsony E. (3%),</td>
<td></td>
</tr>
</tbody>
</table>
Important publications over the last 5 years

1. Radnai F. (3%), Dencs Béláné (2%), Hajdúfi Cs. (2%), Karczub A. (2%), Makó Gy-né (2%), Strbka A-né (2%), Kelemen J. (1%): Method of the purification of cyclosporine A. *Hungarian patent: HU 213 553 (1997)*

Selected recent publications from a total of approx. 40:

1. Hermenean, A; Stan, M; Ardelean, A; Pilat, L; Mihali, CV; Popescu, C; Nagy, L; Deak, G; Zsuga, M; Keki, S; Bacskay, I; Fenyvesi, F; Costache, M; Dinischiotu, A; Vecsernyes, M: Antioxidant and hepatoprotective activity of milk thistle (Silybum marianum L. Gaertn.) seed oil, *Open Life Sciences, 10(1)*, 225-236 (*2015*) IF: 0,78

5. Kocsis D; Deák G; Kéki S; Godó Z.A; Horváth R: Creep and Quasi-Relaxation Examination of Artificially Aged Plasticized PVC, *Journal Of Testing And Evaluation, 45:(4)*, 1213-1221 (*2017*). IF: 0,39, Q2

Activities in specialist bodies over the last 5 years

Member of the Committee of Physical Chemistry of the Hungarian Academy of Sciences
<table>
<thead>
<tr>
<th>Name</th>
<th>Gábor Dobosi, DSc</th>
</tr>
</thead>
<tbody>
<tr>
<td>Position</td>
<td>Professor, Geology</td>
</tr>
</tbody>
</table>
| Academic career | Professor (UD, Department of Mineralogy and Geology, 2014-)
Habilitation (UD, 2012) |
| Doctoral qualification: |
DSc, Hungarian Academy of Sciences, 2004
PhD (CSc), Hungarian Academy of Sciences, 1994
Doctorate, subject (Institution, year)
Undergraduate degree: (subject (Institution, year)):
Chemistry MSc, ELTE 1975
Geology MSc, ELTE 1979 |
| Employment | From assistant research fellow to scientific advisor -
Hungarian Academy of Sciences - 1975 - 2014
Professor, UD Department of Mineralogy and Geology,
2014 - present |
| Research and development projects over the last 5 years | Name of project or research focus:
Period and any other information:
Partners, if applicable:
Amount of financing: |
| Industry collaborations over the last 5 years | Project title:
Partners: |
| Patents and proprietary rights | Title (Year) |
| Important publications over the last 5 years | Selected recent publications from a total of approx.
give total number): 14
Jankovics MÉ, Taracsák Z, Dobosi G, Embey-Isztin A, Batki A, Harangi Sz, Hauzenberger CA
Clinopyroxene with diverse origins in alkaline basalts from the western Pannonian Basin: implications from trace element characteristics
LITHOS 262: pp. 120-134 (2016)
Dobosi G, Harangi Sz
Hungarian National Report on IAVCEI (2011-2014)
Downes H, Carter A, Armstrong R, Dobosi G, Embey-Isztin A
Lower crustal zircons reveal Neogene metamorphism beneath the Pannonian Basin (Hungary)
Batki A, Pál-Molnár E, Dobosi G, Skelton A
Petrogenetic significance of ocellar camptonite dykes in the
<table>
<thead>
<tr>
<th>Name</th>
<th>Dr. habil. Tamás Fézer, PhD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Position</td>
<td>Associate Professor of Law</td>
</tr>
<tr>
<td>Academic career</td>
<td>University of Debrecen Faculty of Law, Civil Law Department, 2003-2015 Habilitation (University of Debrecen, 2015)</td>
</tr>
</tbody>
</table>
| Employment | Ph.D in Law (University of Miskolc, 2009)
Bar Exam (Ministry of Justice, 2007)
J.D. (University of Debrecen, 2003) |
| Research and development projects over the last 5 years | 2018. Ministry of Justice Research Project: ‘Winding-up: models and criticisms on bankruptcy laws in Europe’, Principal Researcher - team leader
2012-2015. OTKA PD 105704 Research project on
| Industry collaborations over the last 5 years | Project title: Establishing a legal trainee program in business law areas
Partners: National Instruments Hungary |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Patents and proprietary rights</td>
<td>-</td>
</tr>
</tbody>
</table>
| Important publications over the last 5 years | Selected recent publications from a total of approx. (give total number): 119
| Activities in specialist bodies over the last 5 years | Association of Private Law Professors, Head of the Supervisory Board Committee (2009-2017)
Pro Futuro Scientific Journal, Advisory Council Member, (2014-)
Center For International Legal Studies, Senior Lawyers Program Coordinator (2006-)
Legal Workshop of Debrecen, Member of Editorial Board (2004-Present) |
| Name | Attila Gáspár |
| Position | Professor |
| Academic career | Doctor of Science (HAS, 2015)
Habilitation (UD, 2005)
PhD (UD, 1997) |
<table>
<thead>
<tr>
<th>Employment</th>
<th>University of Debrecen, Dept. of Inorganic and Analytical Chemistry (1997-)</th>
</tr>
</thead>
</table>
| Research and development projects over the last 5 years | „Chemistry for better life: strategic R&D center at the University of Debrecen” GINOP-2.3.2-15-2016-00008 project
Support: 1,983,995.445 Ft
Number of participants: 139
Duration: 2016.10.01-2020.09.30
website for further information: www.dechem.unideb.hu

„Integrated Instrumental Infrastructure for Research in Molecular Science and Molecular Medicine (I2M2)”
GINOP-2.3.3-15-2016-00004 project
Support: 807,759,930 Ft
Number of participants: 71
Duration: 2016.09.01-2019.06.30.
website for further information: www.i2m2.unideb.hu

OTKA K75286, 2008-10-01 2013-10-31
Title: Fabrication of new types of microfluidic devices and the study of their capabilities for liquid chromatographic, electrophoretic and electrochromatographic separation

OTKA K111932, 2015-01-01 2018-12-31
Title: Analytical separations in microfluidic chips
19701000 HUF |
| Industry collaborations over the last 5 years | Project title: Capillary electrophoretic analysis of monoclonal antibodies
Partner: Richter G. Plc. |
| Patents and proprietary rights | A. Gáspár, H. Berndt: "Vorrichtung zum Atomisieren von flüssigen Proben", German patent, DE 19944650.4
| Important publications over the last 5 years | A. Kiss, A. Gaspar: Fabrication of a Microfluidic Flame Atomic Emission Spectrometer: a Flame-on-a-Chip,
<table>
<thead>
<tr>
<th>Name</th>
<th>László Dr. Juhász Ph.D., dr. habil</th>
</tr>
</thead>
<tbody>
<tr>
<td>Position</td>
<td>associate professor, in charge of organic chemistry of chemist, chemical engineer and bioengineer BSc</td>
</tr>
<tr>
<td>Academic career</td>
<td>education leader of the Chemistry Institute (oct. of 2008. – jan. of 2013.) Habilitation (University of Debrecen, 2015)</td>
</tr>
</tbody>
</table>

Activities in specialist bodies over the last 5 years
- MTA Work Committee for Analysis of Organic Materials and Pharmaceuticals (2005-)
- Hungarian Society for Separation Sciences (2005-)
- CEEPUS H-076 program (2001-)

Anal. Chem., 2018, 90, 5995-6000
A. Kecskemeti, A. Gaspar: Particle-based immobilized enzymatic reactors in microfluidic chips, Talanta, 2018, 180, 211-228
A. Kecskemeti, A. Gaspar: Preparation and characterization of a packed bead immobilized trypsin reactor integrated into a PDMS microfluidic chip for rapid protein digestion, Talanta, 2017, 166, 275–283
| Research and development projects over the last 5 years | Name of project or research focus: New transformations of monosaccharide derivatives at and around the anomic centre - researcher
Period and any other information: 08. of 2013. – 08 of 2018.
Partners, if applicable:
Amount of financing: 43 852 000 HUF |
| Patents and proprietary rights | Name of project or research focus: Chemistry for better life: strategic R &D center at the University of Debrecen (DECHEM; GINOP-2.3.2- 15-2016- 00008) - researcher
Partners, if applicable:
Amount of financing: 1 983 995 445 HUF |
| Industry collaborations over the last 5 years | Project title: -
Partners: - |
| Important publications over the last 5 years | Selected recent publications from a total of approx. (give total number): 26
L. Lázár; L. Juhász; Gy. Batta, A. Borbás, L. Somsák;
Unprecedented β-manno type thiodisaccharides with a C-glycosylic function by photoinitiated hydrothiolation of 1-C-substituted glycals, New Journal of Chemistry, 2017, 41, 1284-1292 |
| | J. József, L. Juhász, T. Z. Illyés, M. Csávás, A. Borbás, L. Somsák;
Photoinitiated hydrothiolation of pyranoid exo-glycals: the D-galacto and D-xylo cases, Carbohydrate Research, 2015, 413, 63-69 |
| | J. Begum, G. Varga, T. Docsa, P. Gergely, J.M. Hayes, L. Juhász, L. Somsák; Computationally motivated synthesis and enzyme kinetic evaluation of N-(6-D-glucopyranosyl)-1,2,4-triazolecarboxamides as glycogen phosphorylase inhibitors
MedChemComm, 2015, 6(1), 80-89 |
| | L. Juhász, G. Varga, A. Sztankovics, Ferenc Béke, T. |
Activities in specialist bodies over the last 5 years

<table>
<thead>
<tr>
<th>Organisation - Role – Period</th>
<th>Name of project or research focus: OTKA 109029 Period and any other information: 2013-2017</th>
</tr>
</thead>
<tbody>
<tr>
<td>Membership without a specific role need not be mentioned</td>
<td>Partners, if applicable: - Amount of financing: -</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Ferenc Krisztiján Kálmán PhD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Position</td>
<td>Assistant professor</td>
</tr>
<tr>
<td>Academic career</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Doctoral qualification: PhD, University of Debrecen (UD), Hungary, 2008</td>
</tr>
<tr>
<td></td>
<td>Undergraduate degree: Chemist MSc, UD, 2002</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Employment</th>
<th>Name of project or research focus: OTKA 120224</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006-2007: Research assistant (UD, Department of Inorganic and Analytical Chemistry)</td>
<td></td>
</tr>
<tr>
<td>2010-2013: Postdoctor (UD, Department of Inorganic and Analytical Chemistry, PD-OTKA 83253)</td>
<td></td>
</tr>
<tr>
<td>2013-2014: Researcher (UD, Department of Inorganic and Analytical Chemistry)</td>
<td></td>
</tr>
<tr>
<td>2014-2018: Researcher (UD, Department of Inorganic and Analytical Chemistry)</td>
<td></td>
</tr>
<tr>
<td>2018-: Assistant professor (UD, Department of Physical Chemistry)</td>
<td></td>
</tr>
</tbody>
</table>
| Industry collaborations over the last 5 years | Project title: -
Partners: - |
|-----------------------------|---------------------------|
| Patents and proprietary rights | Botár Richárd, Garda Zoltán, Fodor Tamás, Kálmán Ferenc Krisztíán, Nagy Viktória, Tircsó Gyula, Tóth Imre: Triaza-cyclononán alapú vegyületek és alkalmazásuk ligandumként Mn(II)-tartalmú MRI kontrasztanyagban: Triaza-cyclononane derivatives and their use as ligands in Mn(II)-based MRI contrast agents
| Patents and proprietary rights | Botár Richárd, Garda Zoltán, Fodor Tamás, Kálmán Ferenc Krisztíán, Nagy Viktória, Tircsó Gyula, Tóth Imre: New 3,6,9,15-tetraaza-bicyclo [9.3.1]pentadeca-1(14), 11(15), 12-triene based compounds and their application as ligands of essential metal ion based MRI and 52Mn based PET contrast agents
| Patents and proprietary rights | Botár Richárd, Garda Zoltán, Fodor Tamás, Kálmán Ferenc Krisztíán, Nagy Viktória, Tircsó Gyula, Tóth Imre: New 2,11-diaza-[3.3](2,6)pyridinophane compounds and their application as ligands of essential metal ion based MRI contrast agents and 52Mn based PET contrast agents
Important publications over the last 5 years

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Title</th>
<th>Publisher, place of publication, date of publication or name of periodical, volume, issue, page numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edit Farkas, Tamás Fodor, Ferenc K. Kálmán, Gyula Tircsó and Imre Tóth</td>
<td>Equilibrium and Dissociation Kinetics of [Al(1,4,7-triazacyclononane-1,4,7-triacetate)] ([Al(NOTA)]) Complex</td>
<td>Reaction Kinetics, Mechanisms and Catalysis, 2015, 116(1), 19-33.</td>
</tr>
<tr>
<td>Christian Vanasschen, Enikő Molnár, Gyula</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1(14),11(15),12-triene derivatives based compounds and their application as ligands of essential metal ion based MRI and 52Mn based PET contrast agents

Baranyai Zsolt, Garda Zoltán, Kálmán Ferenc Krisztián, Krusper László, Tircsó Gyula, Tóth Imre, Ghiani Simona, Maiocchi Alessandro:
Ethylenediaminetetraacetic acid bis(amide) derivatives and their respective complexes with Mn(II) ion for use as MRI contrast agent

Tircsó, Ferenc K. Kálmán, Éva Tóth, Marie Brandt, Heinz H. Coenen, and Bernd Neumaier

Title: Novel CDTA-based, Bifunctional Chelators for Stable and Inert Mn\(^{II}\) Complexation: Synthesis and Physicochemical Characterization

Publisher, place of publication, date of publication or name of periodical, volume, issue, page numbers: Inorg. Chem., 2017, 56(14), 7746–7760.

Author(s): Gyula Tircsó, Zsolt Baranyai, Ferenc Krisztián Kálmán, Zoltán Kovács, Ernő Brücher and Imre Tóth

Title: Stability of metal complexes, chapter 1.3 in Contrast Agents for MRI: Physical Methods

Lability of metal complexes, chapter 1.4 in Contrast Agents for MRI: Physical Methods

Publisher, place of publication, date of publication or name of periodical, volume, issue, page numbers: Eds Valerie C. Pierre and Matthew J. Allen RSC publishing, UK, 2018, pp. 40-74.

Activities in specialist bodies over the last 5 years

Organisation - Role – Period

Membership without a specific role need not be mentioned.

Name

József Kalmár, Ph.D.

Position

Assistant Professor, Department of Inorganic and Analytical Chemistry

Academic career

from 2016: assistant professor, Department of Inorganic and Analytical Chemistry, University of Debrecen, Hungary

2014 – 2016: research fellow, MTA-DE Homogeneous Catalysis and Reaction Mechanisms Research Group, University of Debrecen, Hungary

2010 – 2011: junior research fellow, Department of Chemistry and Biochemistry, University of Oklahoma, USA

2009 – 2012: graduate student, Doctoral School of Chemistry, University of Debrecen, Hungary

Employment

Research and development

Project: Principal Investigator in “Structure and
Important publications over the last 5 years

<table>
<thead>
<tr>
<th>Paper 1</th>
<th>Authors</th>
<th>Title</th>
<th>Journal</th>
<th>Volume</th>
<th>Pages</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Péter Veres, Dániel Sebök, Imre Dékány, Pavel Gurikov, Irina Smirnova, István Fábián, József Kalmár*</td>
<td>A redox strategy to tailor the release properties of Fe(III)-alginate aerogels for oral drug delivery</td>
<td>CARBOHYDRATE POLYMERS</td>
<td>188</td>
<td>pp. 159-167</td>
<td>2018</td>
</tr>
<tr>
<td>2</td>
<td>József Kalmár, Mária Szabó, Nina Simic, István Fábián*</td>
<td>Kinetics and mechanism of the chromium(VI) catalyzed decomposition of hypochlorous acid at elevated temperature and high ionic strength</td>
<td>DALTON TRANSACTIONS</td>
<td>47</td>
<td>DOI: 10.1039/C8DT00120K</td>
<td>2018</td>
</tr>
<tr>
<td>3</td>
<td>Péter Veres, Gábor Király, Gábor Nagy, István Lázár, István Fábián, József Kalmár*</td>
<td>Biocompatible silica-gelatin hybrid aerogels covalently labeled with fluorescein</td>
<td>JOURNAL OF NON-CRYSTALLINE SOLIDS</td>
<td>473</td>
<td>pp. 17-25</td>
<td>2017</td>
</tr>
</tbody>
</table>

Industry collaborations over the last 5 years

<table>
<thead>
<tr>
<th>Project</th>
<th>Description</th>
<th>Partners</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Decomposition of OCI⁻ into ClO₃⁻.”</td>
<td></td>
<td>AkzoNobel N.V.</td>
</tr>
</tbody>
</table>

Projects over the last 5 years

<table>
<thead>
<tr>
<th>Project</th>
<th>Description</th>
<th>Principal Investigator</th>
<th>University</th>
<th>Period</th>
<th>Amount of financing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application of Micro- and Mesoporous Materials</td>
<td>National Research, Development and Innovation Fund of Hungary – FK-17_124571</td>
<td>Principal Investigator in “Functionalized and Hybrid Aerogels as Heterogeneous Catalysts” University of Debrecen Research Fund</td>
<td>shotgun</td>
<td>2017 – 2021</td>
<td>84 100 EUR</td>
</tr>
<tr>
<td>Application of Micro- and Mesoporous Materials</td>
<td>Principal Investigator in “Functionalized and Hybrid Aerogels as Heterogeneous Catalysts” University of Debrecen Research Fund</td>
<td>Project Leader in “Chemistry for Better Life: Strategic R&D Center at the University of Debrecen (DECHEM)” GINOP-2.3.2-15-2016-00008</td>
<td>University of Debrecen Research Fund</td>
<td>2016 – 2020</td>
<td>6 104 600 EUR</td>
</tr>
<tr>
<td>“Decomposition of OCI⁻ into ClO₃⁻.”</td>
<td></td>
<td>AkzoNobel N.V.</td>
<td>University of Debrecen Research Fund</td>
<td>2015 – 2016</td>
<td>20 200 EUR</td>
</tr>
<tr>
<td>“Decomposition of OCI⁻ into ClO₃⁻.”</td>
<td></td>
<td>AkzoNobel N.V.</td>
<td>University of Debrecen Research Fund</td>
<td>2015 – 2016</td>
<td>20 200 EUR</td>
</tr>
</tbody>
</table>

Industry collaborations over the last 5 years

- Project: “Decomposition of OCI⁻ into ClO₃⁻.”
 - Partners: AkzoNobel N.V.

Important publications over the last 5 years

- Total number of international publications: 22
- Total impact factor of publications: 81.43
- Total number of independent citations: 158

1. Péter Veres, Dániel Sebök, Imre Dékány, Pavel Gurikov, Irina Smirnova, István Fábián, József Kalmár*.
 - A redox strategy to tailor the release properties of Fe(III)-alginate aerogels for oral drug delivery.

2. József Kalmár, Mária Szabó, Nina Simic, István Fábián*.
 - Kinetics and mechanism of the chromium(VI) catalyzed decomposition of hypochlorous acid at elevated temperature and high ionic strength.

 - Biocompatible silica-gelatin hybrid aerogels covalently labeled with fluorescein.
| 4 | Péter Veres, Mónika Kéri, István Bányai, István Lázár, István Fábián, Concepción Domingo, József Kalmár*
Mechanism of drug release from silica - gelatin aerogel – Relationship between matrix structure and release kinetics
|---|---|
| 5 | József Kalmár*, Gábor Lente, István Fábián
Kinetics and mechanism of the adsorption of methylene blue from aqueous solution on the surface of a quartz cuvette by on-line UV-Vis spectrophotometry
| 6 | József Kalmár*, Mónika Kéri, Zsolt Erdei, István Bányai, István Lázár, Gábor Lente, István Fábián
The Pore Network and the Adsorption Characteristics of Mesoporous Silica Aerogel: Adsorption Kinetics on a Timescale of Seconds
| 7 | István Lázár, József Kalmár*, Anca Peter, Anett Szilágyi, Enikő Győri, Tamás Ditrói, István Fábián
Photocatalytic performance of highly amorphous titania–silica aerogels with mesopores: The adverse effect of the in situ adsorption of some organic substrates during photodegradation
| 8 | József Kalmár*, Gábor Lente, István Fábián
Detailed kinetics and mechanism of the oxidation of thiocyanate ion (SCN–) by peroxomonosulfate ion (HSO5–). Formation and subsequent oxidation of hypothiocyanite ion (OSCN–).
INORGANIC CHEMISTRY 52:(4) pp. 2150-2156. (2013) |
| 9 | József Kalmár, Shawna B Ellis, Michael T Ashby, Ronald R Halterman*
Kinetics of Formation of the Host-Guest Complex of a Viologen with Cucurbit[7]uril
<table>
<thead>
<tr>
<th>Name</th>
<th>Judit Kapás</th>
</tr>
</thead>
<tbody>
<tr>
<td>Position</td>
<td>professor, director of the Institute of Economics</td>
</tr>
</tbody>
</table>
| Academic career | MA in economics, Karl Marx University of Economics, Budapest, 1985
| | PhD in economics, University of Miskolc, 2001
| | Habilitation: University of Debrecen, 2006 |
| Employment | University of Debrecen, Faculty of Economics and Business |
| Research and development projects over the last 5 years | “Layers of culture: determinants of institutions, of development, or of both? An economic interpretation”, Hungarian National Research, Development, and Innovation Office, leader, 2016-2020 (13.111 M HUF) |
| Industry collaborations over the last 5 years | |
| Patents and proprietary rights | |
| Activities in specialist bodies over the last 5 years | Competitio, editor in chief, 2011-2017
Hungarian Society for New Institutional Economics, secretary, 2003- |
Head of the Doctoral School in Economics, 2014

<table>
<thead>
<tr>
<th>Name</th>
<th>Prof. Sándor Kéki, PhD, DSc</th>
</tr>
</thead>
<tbody>
<tr>
<td>Position</td>
<td>Full Professor, in charge of Chemical Engineering BSc and MSc</td>
</tr>
<tr>
<td>Academic career</td>
<td>Head of Department (University of Debrecen Department of Applied Chemistry, 2010-) DSc, Hungarian Academy of Sciences (2008) Habilitation (University of Debrecen, 2004)</td>
</tr>
<tr>
<td>Employment</td>
<td>Doctoral qualification: PhD, Kossuth Lajos University, Hungary, 1996 Doctorate, subject: Oscillation reactions Undergraduate degree, subject: Chemistry MSc, Kossuth Lajos University, Hungary, 1989</td>
</tr>
<tr>
<td></td>
<td>Full Professor, University of Debrecen, Department of Applied Chemistry (2010-) Associate Professor, University of Debrecen, Department of Applied Chemistry (2004-2010) Assistant Professor, University of Debrecen, Department of Applied Chemistry (1998-2004) Research assistant, Kossuth Lajos University, Department of Applied Chemistry (1994-1998) Research assistant, Kossuth Lajos University, Department of Physical Chemistry (1992-1994) TMB fellow, Kossuth Lajos University, Department of Physical Chemistry (1989-1992)</td>
</tr>
</tbody>
</table>
Industry collaborations over the last 5 years

<table>
<thead>
<tr>
<th>Project Title</th>
<th>Partner</th>
</tr>
</thead>
<tbody>
<tr>
<td>Characterization of low molecular weight pharmaceuticals</td>
<td>Teva Pharmaceutical Works Ltd.</td>
</tr>
<tr>
<td>Characterization of polymers</td>
<td>MOL Petrochemicals</td>
</tr>
<tr>
<td>Characterization of isocyanates</td>
<td>BorsodChem</td>
</tr>
<tr>
<td>Investigation and characterization of polyisobutylene</td>
<td>Infineum Ltd.</td>
</tr>
</tbody>
</table>

Patents and proprietary rights

Dynamic star polymers and a method for the synthesis thereof (2000)

Important publications over the last 5 years

Selected recent publications from a total of approx. (give total number): 154

Authors: Miklós Nagy, Dávid Rácz, Zsolt László Nagy, Péter Pál Fehér, József Kalmár, István Fábián, Alexandra Kiss, Miklós Zsuga, Sándor Kéki

Title: Solvatochromic isocyanonaphthalene dyes as ligands for silver (I) complexes, their applicability in silver (I) detection and background reduction in biolabelling

Publisher, place of publication, date of publication or name of periodical, volume, issue, page numbers: SENSORS AND ACTUATORS B: CHEMICAL, 255, 2555-2567 (2018)

Authors: Nagy T, Kuki A, Zsuga M, Keki S

Title: Mass-Remainder Analysis (MARA): a New Data Mining Tool for Copolymer Characterization

Publisher, place of publication, date of publication or name of periodical, volume, issue, page numbers: ANALYTICAL CHEMISTRY, 90, 3892-3897 (2018)

Authors: Borbála Antal, Ákos Kuki, Lajos Nagy, Tibor
<table>
<thead>
<tr>
<th>Title</th>
<th>Authors</th>
<th>Publisher, place of publication, date of publication or name of periodical, volume, issue, page numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rapid detection of hazardous chemicals in textiles by direct analysis in real time mass spectrometry (DART-MS)</td>
<td>Nagy, Miklós Zsuga, Sándor Kéki</td>
<td>ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 408, 5189-5198 (2016)</td>
</tr>
</tbody>
</table>

Activities in specialist bodies over the last 5 years

- Hungarian Academy of Sciences, Member of the Committee of Inorganic Chemistry and Materials Science (2011-)
- Hungarian Academy of Sciences, Chairman of the Regional Committee of Polymer Chemistry (2005-)
- Faculty of Chemical and Biochemical Engineering, Budapest University of Technology and Economics, Member of the Doctoral and Habilitation Committee (2006-)
- University of Debrecen, Leader of the Macromolecular and Surface Chemistry program of the Chemistry Doctoral School, (2011-)
- University of Debrecen, Supervisor of the Chemical Engineering BSc major (2010-)

<table>
<thead>
<tr>
<th>Name</th>
<th>János Kerékgyártó, PhD, CSc</th>
</tr>
</thead>
<tbody>
<tr>
<td>Position</td>
<td>Senior research fellow, in charge of Biology BSc</td>
</tr>
<tr>
<td>Academic career</td>
<td>CSc, Hungarian Academy of Sciences, Budapest, 1994</td>
</tr>
<tr>
<td>Academic career</td>
<td></td>
</tr>
<tr>
<td>Doctoral qualification: PhD, University of Debrecen, 1994</td>
<td></td>
</tr>
<tr>
<td>Doctorate, subject: „Chemical synthesis of biologically active oligosaccharides”, 1994</td>
<td></td>
</tr>
<tr>
<td>Undergraduate degree, subject: Chemistry MSc, Debrecen, 1981</td>
<td></td>
</tr>
<tr>
<td>Employment</td>
<td></td>
</tr>
<tr>
<td>Senior research fellow, Department of Botany, Faculty of Sciences and Technology, University of Debrecen, 2009-present</td>
<td></td>
</tr>
<tr>
<td>Senior research fellow, Institute of Biochemistry, Faculty of Sciences and Technology, University of Debrecen, 2000-2009</td>
<td></td>
</tr>
<tr>
<td>Senior research fellow, Institute of Biochemistry, Faculty of Sciences, Lajos Kossuth University, Debrecen, 1995-2000</td>
<td></td>
</tr>
<tr>
<td>Postdoctoral fellow, Bijvoet Center, Department of Bio-Organic Chemistry, Utrecht University, Utrecht, The Netherlands, 1995</td>
<td></td>
</tr>
<tr>
<td>Scientific fellow, Institute of Biochemistry, Faculty of Sciences, Lajos Kossuth University, Debrecen, 1988-1994</td>
<td></td>
</tr>
<tr>
<td>Post Graduate Scholarship Student of the Hungarian Academy of Sciences, Institute of Biochemistry, Faculty of Sciences, Lajos Kossuth University, Debrecen, 1985-1988</td>
<td></td>
</tr>
<tr>
<td>Young investigator, Bijvoet Center, Department of Bio-Organic Chemistry, Utrecht University, Utrecht, The Netherlands, 1986-1987</td>
<td></td>
</tr>
<tr>
<td>Junior research assistant, Institute of Biochemistry, Faculty of Sciences, Lajos Kossuth University, Debrecen, 1981-1984</td>
<td></td>
</tr>
<tr>
<td>Research and development projects over the last 5 years</td>
<td></td>
</tr>
<tr>
<td>Name of project or research focus: Functional glycomics</td>
<td></td>
</tr>
<tr>
<td>Period and any other information: 2012-present</td>
<td></td>
</tr>
<tr>
<td>Partners, if applicable:</td>
<td>MTA-PE Translational Glycomics Group, MUKKI, University of Pannonia, Veszprém, Hungary</td>
</tr>
</tbody>
</table>
| Industry collaborations over the last 5 years | Partners: GlycOptim Ltd., Debrecen, 2018
Cyclolab Ltd., Budapest, 2016-2017 |
| Patents and proprietary rights | „Procedure for the synthesis of glycosides of aromatic amines”
Hungarian patent: HU 203 896 (1988)
„Procedure for the synthesis of amino-benzoicacid-N-glycoside derivatives”
Hungarian patent: HU 208 146 (1989) |
| Important publications over the last 5 years | Selected recent publications from a total of 37:
1. L. Kalmár, Z. Szurmai, J. Kerékgyártó, A. Guttman, M. Bojstrup, K. Ágoston
Phenyl-2-O-acetyl-3-O-allyl-4-O-benzyl-1-thio-6-D-glucopyranoside, a versatile, orthogonally protected building block
Synthesis and MALDI-TOF analysis of protected oligosaccharide components of N-glycoproteins
3. B. Döncző, J. Kerékgyártó, Z. Szurmai, A. Guttman
Glycan microarrays: new angels and strategies
 Analyst, 139, (2014) 2650-2657
4. B. Döncző, L. Kalmár, J. Kerékgyártó, Z. Szurmai, A. Guttman
Combinatorial glycomics 1: Synthesis options
Chem. Listy 107, s352-s354 (2013)
Neoglycoproteins as carbohydrate antigens: synthesis, analysis, and polyclonal antibody response
Electrophoresis, 34, (2013) 2379-2386 |
<p>| Activities in specialist bodies over the last 5 years | Head of the Asklepios Scientific Foundation, 1995-2017 |</p>
<table>
<thead>
<tr>
<th>Name</th>
<th>Dr. Ágnes Kotsis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Position</td>
<td>Senior Assistant Professor at the Institute of Management and Organizational Sciences</td>
</tr>
</tbody>
</table>
| **Academic career** | 2009 Assistant Lecturer (University of Debrecen)
2012 Assistant Professor (University of Debrecen) |
| **Academic career** | PhD (University of Debrecen, 2012)
Master degree on the field of economics (University of Debrecen, 2006) |
| **Employment** | Assistant Lecturer, 2009-2012, University of Debrecen
Assistant Professor, 2012-, University of Debrecen
Maternity Leave 2014-2016 |
| **Academic career** | Academic Research Group on the field of economics of education:
Period and any other information: 2016
Partners, if applicable:
Andras, Kun Istvan (UD)
Marietta, Kiss (UD)
Zsuzsanna, Kiss (UD)
Domícián, Máté (UD)
Máté Vona (UD)
Amount of financing: 1.775.000.HUF |
| **Industry collaborations over the last 5 years** | - |
| **Patents and proprietary rights** | - |
| **Important publications over the last 5 years** | Selected recent publications from a total of approx. (give total number): 30
1.) Author(s): Agnes Kotsis
Title: The Individual, Education or Work environment influences the quality of graduates’ employment?
2.) Author(s): Agnes Kotsis
Title: Graduated on the labour market, reasons for overeducation
Activities in specialist bodies over the last 5 years

<table>
<thead>
<tr>
<th>Name</th>
<th>Ákos Kuki</th>
</tr>
</thead>
<tbody>
<tr>
<td>Position</td>
<td>associate professor</td>
</tr>
</tbody>
</table>
| Academic career | college assistant lecturer, Teachers’ Training College Nyíregyháza, 1992
Habilitation: University of Debrecen, 2015 |
| Employment | PhD, Material Sciences, University of Miskolc, 2002
MSc. (electrical engineer, Technical University of Budapest, 1991),
MSc (teacher of electrical engineering, Technical University of Budapest, 1994) |
| Research and development projects over the last 5 years | OTKA K116465, OTKA K101850, OTKA K109006,
GINOP-2.3.2-15-2016-00041, Regional Workshop for Excellence in Materials Science, 2017-2020
EFOP-3.6.1-16-2016-00022, Debrecen Venture Catapult Program, 2018- |
| Industry collaborations over the last 5 years | |
| Patents and proprietary rights | |
| Important publications over the | Selected recent publications from a total of approx. 40: |
last 5 years

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
</table>

Activities in specialist bodies over the last 5 years

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Member of the Committee of Physical Chemistry of the Hungarian Academy of Sciences</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>István Lázár, PhD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Position</td>
<td>Associate Professor of Chemistry, Department of Inorganic and Analytical Chemistry</td>
</tr>
<tr>
<td>Academic career</td>
<td>Candidate of Science (C.Sc.) degree: 1994, Hungarian Academy of Science, Coordination Chemistry Doctorate, subject: Kossuth Lajos University, 1987, Boron organic chemistry Undergraduate degree, subject: Chemist, MSc, 1984</td>
</tr>
</tbody>
</table>
Research and development projects over the last 5 years

<table>
<thead>
<tr>
<th>Role: researcher</th>
<th>Name of project or research focus: TÁMOP-4.2.2.A-11/1/KONV-2012-0036; Intelligent Functional Materials: Mechanical, thermal, electromagnetic and optical properties and applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Period and any other information: 2012-2016</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Role: researcher</th>
<th>GINOP-2.2.1-15-2017-00068, Gel-based biomatrices for human tissue replacements, and the development of their production technologies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Period and any other information: 2017-2021</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Role: researcher</th>
<th>GINOP-2.3.2-15-2016-00041, Regionális Anyagtudományi Kiválósági Műhely - Kutatási Program és Infrastruktúra</th>
</tr>
</thead>
<tbody>
<tr>
<td>Period and any other information: 2017-2021</td>
<td></td>
</tr>
</tbody>
</table>

Industry collaborations over the last 5 years

Patents and proprietary rights

| Using polyazamacrocyclic compounds for intracellular measurement of metal ions using MRS; U.S. (1993), US 5188816: |
| Polyazamacrocyclic compounds for complexation of metal ions; U.S. (1994), US 5342606 |
| ELJÁRÁS KOMPOZIT SZILKÁ ALCOGÉLEK, AEROGÉLEK ÉS XEROGÉLEK ELŐÁLLÍTÁSÁRA, VALAMINT AZ ELJÁRÁS FOLYAMATOS MEGVALÓSÍTÁSÁRA ALKALMAS BERENDEZÉS; Hung. Pat. Appl. (2013), HU 2011000060 A2 20130628 |
| Method for the preparation of composite silica alcogels, aerogels and xerogels, apparatus for carrying out the method continuously, and novel composite silica alcogels, aerogels and xerogels; PCT Int. Appl. (2013), WO 2013061104 A2 20130502. |

Important publications over the last 5 years

<p>| Selected recent publications from a total of: 16 |</p>
<table>
<thead>
<tr>
<th>Activities in specialist bodies over the last 5 years</th>
</tr>
</thead>
</table>
| 1) Author: István Lázár Helga Fruzsina Bereczki Sándor Manó Lajos Daróczy György Deák István Fábián Zoltán Csernátory
Title: Synthesis and study of new functionalized silica aerogel poly(methyl methacrylate) composites for biomedical use
2) Author: István Lázár, József Kalmár, Anca Peter, Anett Szilágyi, Enikő Győri, Tamás Ditrói, István Fábián
Title: Photocatalytic performance of highly amorphous titania–silica aerogels with mesopores: The adverse effect of the in situ adsorption of some organic substrates during photodegradation
3) Author: I. Lázár, A. Szilágyi, G. Sáfrán, A. Szegedi, S. Stichlautner, K. Lázár
Title: Iron oxyhydroxide aerogels and xerogels by controlled hydrolysis of FeCl3.6H2O in organic solvents: stages of formation
RSC Adv., 2015, 5, 72716
4) Author: H. F. Bereczki, L. Daróczki, I.Fábián, I. Lázár
Title: Sol-gel synthesis, characterization and catalytic activity of silica aerogels functionalized with copper(II) complexes of cyclen and cyclam
Microporous and Mesoporous Materials 234 (2016) 392e400
5) Author: P. Veres, M. Kéri, I. Bányai, I. Lázár, I. Fábián, C. Domingo, J. Kalmár
Title: Mechanism of drug release from silica-gelatin aerogel—Relationship between matrix structure and release kinetics
Colloids and Surfaces B: BioInterfaces 152 (2017) 229–237 |
<table>
<thead>
<tr>
<th>Name</th>
<th>Zoltán Muzsnay</th>
</tr>
</thead>
<tbody>
<tr>
<td>Position</td>
<td>Head of department, Department of Geometry, Institute of Mathematics</td>
</tr>
<tr>
<td>Industry collaborations over the last 5 years</td>
<td>-</td>
</tr>
<tr>
<td>Patents and proprietary rights</td>
<td>-</td>
</tr>
</tbody>
</table>
| Important publications over the | Sprays metrizable by Finsler functions of constant flag curvature, Differential Geom. Appl. 31 (2013), no. 3, 405-415. (with I.
<table>
<thead>
<tr>
<th>last 5 years</th>
<th>Bucataru)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Projectively flat Finsler manifolds with infinite dimensional holonomy</td>
<td></td>
</tr>
<tr>
<td>Forum Mathematicum, 27, 2, 2015, pp 767–786, (with P.T. Nagy)</td>
<td></td>
</tr>
<tr>
<td>Freedom of h(2)-variationality and metrizability of sprays Differential Geometry and its Applications, (with S.G. Elgend)</td>
<td></td>
</tr>
<tr>
<td>Activities in specialist bodies over the last 5 years</td>
<td>- member of the advisory board of János Bolyai Research Fellowship of the Hungarian Academy of Sciences, 2016 - present,</td>
</tr>
<tr>
<td></td>
<td>- vice-president, scientific section, János Bolyai Mathematical</td>
</tr>
</tbody>
</table>
Society, 2015 - present,
- editor of the Electronic Mathematical Journal of the János Bolyai
Math.~Society, 2015 - 2016,
- member of the scientific review panel, Hungarian National Research,
 Development and Innovation Fund, 2016 - 2017,
- secretary of the Mathematical Subcommittee of the Academic
 Committee in Debrecen, 1998 - 2000,
- member of public body of Hungarian Academy of Sciences
- member of the János Bolyai Mathematical Society,
- secretary of the Doctoral Concil of Natural Sciences, 2008 -
 2017,
- member of the Faculty Council, Faculty of Sciences, 2005 -
 2008.

<table>
<thead>
<tr>
<th>Name</th>
<th>Lajos Nagy PhD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Position</td>
<td>Associate Professor</td>
</tr>
<tr>
<td>Academic career</td>
<td>Habilitation (UD, 2017)</td>
</tr>
<tr>
<td></td>
<td>doctoral qualification: PhD, University of Debrecen, Hungary, 2009</td>
</tr>
<tr>
<td></td>
<td>Doctorate, subject: University of Debrecen, Hungary Mass Spectrometry, 2004</td>
</tr>
<tr>
<td></td>
<td>Undergraduate degree, subject: MSc in Chemistry, Chemical Engineering BSc</td>
</tr>
<tr>
<td>Employment</td>
<td>Assistant lecturer – 2009</td>
</tr>
<tr>
<td></td>
<td>Assistant professor – 2012</td>
</tr>
<tr>
<td></td>
<td>Associate professor – 2017</td>
</tr>
<tr>
<td>Research and development projects over the last 5 years</td>
<td>Name of project or research focus: HURO/0901/058/2.2.2., EU project: Hungary-Romania Cross-Border Co-operation Programme</td>
</tr>
<tr>
<td></td>
<td>Period and any other information: 2007-2013</td>
</tr>
<tr>
<td></td>
<td>Partners, if applicable:</td>
</tr>
<tr>
<td></td>
<td>Amount of financing:</td>
</tr>
<tr>
<td></td>
<td>Name of project or research focus: GINOP-2.3.2-15-2016-00041, EU project: Regional Workshop for Excellence in Materials Science - Research Program and</td>
</tr>
<tr>
<td>Infrastructure</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Period and any other information: 2017-2020</td>
<td></td>
</tr>
<tr>
<td>Partners, if applicable:</td>
<td></td>
</tr>
<tr>
<td>Amount of financing:</td>
<td></td>
</tr>
<tr>
<td>Name of project or research focus: NKFIH-101850, National Research, Development and Innovation Office</td>
<td></td>
</tr>
<tr>
<td>Title: Soft ionization mass spectrometric study of non-polar polymers.</td>
<td></td>
</tr>
<tr>
<td>Period and any other information: 2012-2016</td>
<td></td>
</tr>
<tr>
<td>Partners, if applicable:</td>
<td></td>
</tr>
<tr>
<td>Amount of financing:</td>
<td></td>
</tr>
<tr>
<td>Name of project or research focus: NKFIH-116465, National Research, Development and Innovation Office</td>
<td></td>
</tr>
<tr>
<td>Title: Synthesis and characterization of smart fluorescent polymers.</td>
<td></td>
</tr>
<tr>
<td>Period and any other information: 2016-2019</td>
<td></td>
</tr>
<tr>
<td>Partners, if applicable:</td>
<td></td>
</tr>
<tr>
<td>Amount of financing:</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Industry collaborations over the last 5 years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project title:</td>
</tr>
<tr>
<td>Partners:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Patents and proprietary rights</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title (Year)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Important publications over the last 5 years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selected recent publications from a total of approx. (give total number): 30</td>
</tr>
<tr>
<td>Author(s): Nagy L., Kuki Á., Nagy T., Mándi A., Deák G., Nagy M., Batta G., Zsuga M., Kéki S.:</td>
</tr>
<tr>
<td>Title: Collision-induced dissociation study of isosilychristin, a constituent of Silymarin</td>
</tr>
<tr>
<td>Publisher, place of publication, date of publication or name of periodical, volume, issue, page numbers: Rapid Commun. Mass Spectrom. 2013, 27, 1413-1416.</td>
</tr>
<tr>
<td>Author(s): Nagy L., Kuki A., Szabó K., Sipos A., Zsuga M., Kéki S.:</td>
</tr>
<tr>
<td>Title: Fragmentation study of noscapine derivatives under electrospray conditions</td>
</tr>
<tr>
<td>Publisher, place of publication, date of publication or name of periodical, volume, issue, page numbers: Rapid</td>
</tr>
<tr>
<td>Activities in specialist bodies over the last 5 years</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>Author(s): Lajos Nagy, Tibor Nagy, György Deák, Ákos Kuki, Borbála Antal, Miklós Zsuga, Sándor Kéki:</td>
</tr>
<tr>
<td>Title: Direct analysis in real time mass spectrometry (DART-MS) of highly non-polar low molecular weight polyisobutlenes</td>
</tr>
<tr>
<td>Any other information:</td>
</tr>
<tr>
<td>Publisher, place of publication, date of publication or name of periodical, volume, issue, page numbers:</td>
</tr>
<tr>
<td>Author(s): Lajos Nagy; Tibor Nagy; György Deák; Ákos Kuki; Mihály Purgel; Mijid Narmandakh; Béla Iván; Miklós Zsuga; Sándor Kéki:</td>
</tr>
<tr>
<td>Title: Can Nonpolar Polyisobutlenes be Measured by Electrospray Ionization Mass Spectrometry? Anion-Attachment Proved to be an Appropriate Method</td>
</tr>
<tr>
<td>Any other information:</td>
</tr>
<tr>
<td>Publisher, place of publication, date of publication or name of periodical, volume, issue, page numbers:</td>
</tr>
<tr>
<td>Author(s): Lajos Nagy, Tibor Nagy, Ákos Kuki, Mihály Purgel, Miklós Zsuga and Sándor Kéki:</td>
</tr>
<tr>
<td>Title: Kinetics of Uncatalyzed Reactions of 2,4′- and 4,4′-Diphenylmethane-Diisocyanate with Primary and Secondary Alcohols</td>
</tr>
<tr>
<td>Any other information:</td>
</tr>
<tr>
<td>Publisher, place of publication, date of publication or name of periodical, volume, issue, page numbers:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Miklós Nagy PhD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Position</td>
<td>Associate Professor</td>
</tr>
<tr>
<td>Academic career</td>
<td>Habilitation (UD, 2017)</td>
</tr>
</tbody>
</table>
doctoral qualification: PhD, University of Debrecen, Hungary, 2005

Doctorate, subject: University of Debrecen, Synthesis and characterization of functionalized polymers

Undergraduate degree, subject: Chemistry MSc

Qualification: Chemist, 2000

| Employment | Associate Professor, University of Debrecen, Department of Applied Chemistry 2018-
| Assistant Professor, University of Debrecen, Department of Applied Chemistry 2007-2018
| Teaching Assistant, University of Debrecen, Department of Applied Chemistry - 2002-2007 |

| Research and development projects over the last 5 years | Name of projects: participant in GINOP-2.3.2-15-2016-00041, EU project: Regional Material Science Excellence Workshop - Research Program and Infrastructure
| Period: 2016-
| participant in NKFI K-116465, Hungarian project: Synthesis and characterization of smart fluorescent polymers Period: 2016-

| Industry collaborations over the last 5 years | Project title: Photopolymerization of epoxidated plant oils
| Partners: Polinvent Zrt. |

| Patents and proprietary rights | Title (Year) |

| Important publications over the last 5 years | Selected recent publications from a total of approx. (give total number): 11
| Authors: Miklós Nagy, Dávid Rácz, Zsolt László Nagy, Péter Pál Fehér, József Kalmár, István Fábián, Alexandra Kiss, Miklós Zsuga, Sándor Kéki
| Title: Solvatochromic isocyanonaphthalene dyes as ligands for silver(I) complexes, their applicability in silver(I) detection and background reduction in biolabelling
| Sensors and Actuators B: Chemical, 255, 2555-2567 (2018) |
Authors: Miklós Nagy, Dávid Rácz, Zsolt László Nagy, Tibor Nagy, Péter Pál Fehér, Mihály Purgel, Miklós Zsuga, Sándor Kéki

Title: An acrylated isocyanonaphthalene based solvatochromic click reagent: Optical and biolabeling properties and quantum chemical modeling.
Dyes and Pigments, 133, 445-457 (2016)

Authors: Miklós Nagy, Dávid Rácz, Sándor Lajos Kovács, László Lázár, Péter Pál Fehér, Mihály Purgel, Miklós Zsuga, Sándor Kéki

Title: New blue light-emitting isocyanobiphenyl based fluorophores: Their solvatochromic and biolabeling properties

Authors: Miklós Nagy, Dávid Rácz, László Lázár, Mihály Purgel, Tamás Ditrói, Miklós Zsuga, Sándor Kéki

Title: Solvatochromic study of highly fluorescent alkylated-isocyanonaphthalenes, their pi-stacking, hydrogen bonding complexation and quenching with pyridine.

Authors: Dávid Rácz, Miklós Nagy, Attila Mándi, Miklós Zsuga, Sándor Kéki

Title: Solvatochromic properties of a new isocyanonaphthalene based fluorophore

Activities in specialist bodies over the last 5 years

Name | Noémi M. Nagy
Position | professor, Nuclear and radiochemistry

Academic career
2009 DSc, Hungarian Academy of Sciences
2003 habilitation, environmental science, University of Debrecen
1993 candidate of chemical science, Hungarian Academy of Sciences, Budapest
1987 PhD, Kossuth Lajos University, Debrecen
<table>
<thead>
<tr>
<th>Employment</th>
<th>1984 Master of Science (MSc) as a chemist and English-Hungarian translator, Kossuth Lajos University, Debrecen</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013- Professor</td>
<td>2004- Head of Isotope Laboratory</td>
</tr>
<tr>
<td>2004-2013 Associate professor, University of Debrecen, Dep. Colloid and Environmental Chemistry, Isotope Laboratory</td>
<td>1995-2004 Senior research fellow, Kossuth Lajos University, Isotope Laboratory, Debrecen</td>
</tr>
<tr>
<td>1998-1994 Research fellow, Kossuth Lajos University, Isotope Laboratory, Debrecen</td>
<td>1985-1988 Junior research fellow, Kossuth Lajos University, Isotope Laboratory, Debrecen</td>
</tr>
<tr>
<td>1984 - 1985 Junior research fellow, Kossuth Lajos University, Dep. Colloid Chemistry, Debrecen</td>
<td></td>
</tr>
</tbody>
</table>

| Research and development projects over the last 5 years | 1. EU and co-financed by the European Regional Development Fund under the project GINOP-2.3.2-15-2016-00008, 2016-2020. (within the Chemical Institute) |

| Industry collaborations over the last 5 years | - |

| Patents and proprietary rights | - |

<p>| | 2. Kovács E.M., Baradács E.E., Kónya P., Kovács-Pálffy P., Harangi S., Kuzmann E., Kónya J., Nagy N.M. Preparation and structure's analyses of lanthanide (Ln) - exchanged bentonites |
| | 3. Nagy N.M., Kovács E.M., Kónya J. Ion exchange isotherms in solid: electrolyte solution systems |</p>
<table>
<thead>
<tr>
<th>Name</th>
<th>Levente Novák</th>
</tr>
</thead>
<tbody>
<tr>
<td>Position</td>
<td>assistant professor</td>
</tr>
<tr>
<td>Academic career</td>
<td></td>
</tr>
<tr>
<td>Initial academic appointment:</td>
<td>Research Associate, University of Debrecen, 1998-2006</td>
</tr>
<tr>
<td>Assistant Professor from 2006</td>
<td></td>
</tr>
<tr>
<td>doctral qualification:</td>
<td>PhD in Molecular and Cellular Biology, Genetics and Biotechnology, Institut National des Sciences Appliquées (INSA) de Toulouse, France, 1998</td>
</tr>
<tr>
<td>Doctorate, subject (Institution, year):</td>
<td>The metabolic network of Lactococcus lactis NCDO2118: interactions between carbon and nitrogen metabolism, INSA de Toulouse, France, 1994-1997</td>
</tr>
<tr>
<td>Undergraduate degree, subject:</td>
<td>DEA in Microbiology, INSA, Toulouse, France, 1994</td>
</tr>
<tr>
<td>Biologist (specialization in Biotechnology), Lajos Kossuth University (later University of Debrecen), 1993</td>
<td></td>
</tr>
<tr>
<td>Employment</td>
<td></td>
</tr>
<tr>
<td>Natural History Museum, Budapest, Hungary, 1986-1987</td>
<td></td>
</tr>
<tr>
<td>Fontesz Ltd., Budapest, Hungary, 1997-1998</td>
<td></td>
</tr>
<tr>
<td>University of Debrecen, 1998-present</td>
<td></td>
</tr>
<tr>
<td>Research and development projects over the last 5 years</td>
<td></td>
</tr>
<tr>
<td>1. GINOP-2.3.2- 15-2016- 00008, EU project: Chemistry for better life: strategic R&D centre at the University of Debrecen</td>
<td></td>
</tr>
<tr>
<td>Period and any other information: 2016-2020</td>
<td></td>
</tr>
<tr>
<td>Partners, if applicable:</td>
<td></td>
</tr>
<tr>
<td>Amount of financing: 1 983 995 445 HUF</td>
<td></td>
</tr>
<tr>
<td>2. Hungarian-Chinese Bilateral Cooperation (2013-2015,</td>
<td></td>
</tr>
<tr>
<td>Industry collaborations over the last 5 years</td>
<td>TEVA Ltd., Hungary, 2017. Rheological measurements</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Important publications over the last 5 years</td>
<td>Selected recent publications from a total of 19:</td>
</tr>
</tbody>
</table>

Activities in specialist bodies over the last 5 years

<table>
<thead>
<tr>
<th>Name</th>
<th>Dr. Miklós Pakurár</th>
</tr>
</thead>
</table>

Position

Teaching area and designation:
- Operations Management, Supply Chain and Logistics Management, Lean management, Procurement, Employment

Academic career

Initial academic appointment:
- University of Agricultural Sciences, Debrecen, 1983

Habilitation:
- University of Debrecen, 2011

doctoral qualification:
- *PhD, University of Debrecen, 2000*

Doctorate, subject:
- *PhD, Plant Science, University of Debrecen, 2000*

Undergraduate degree, subject: (Institution, year)
- Gödöllő University of Agricultural Sciences, Gödöllő, Hungary MSc in Teacher of Engineering (Agriculture)
 - 1993

Employment

Position - Employer – Period
- Head of Department, Associate Professor – DE - 2006-
- Assistant Professor – DE - 1989 – 1998
Research and development projects over the last 5 years

Name of project or research focus:
- Logistics Functions in Production Companies

Period and any other information:
- 2016-2017
- **Partners, if applicable:** -
- **Amount of financing:** 2.5 M Ft

Industry collaborations over the last 5 years

Project title:
- Improvement of Logistics Processes in Warehousing and Transportation

Partners:
- Trans-Sped

Patents and proprietary rights

Title (Year) -

Important publications over the last 5 years

Selected recent publications from a total of approx. (give total number): 15

Activities in specialist bodies over the last 5 years

Organisation - Role – Period
- **Membership without a specific role need not be mentioned.**
- Logistics Working Committee of MTA DAB - co-
<table>
<thead>
<tr>
<th>Name</th>
<th>Mihály Purgel PhD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Position</td>
<td>Senior lecturer; Teaching in Chemistry BSc, Chemistry MSc, Chemical Engineering BSc and Chemical Engineering MSc</td>
</tr>
</tbody>
</table>
| Academic career | Research fellow (MTA-DE Homogeneous Catalysis and Reaction Mechanisms Research Group, 2014)
Assistant research fellow (MTA-DE Homogeneous Catalysis Research Group, 2009) |
| Employment | Senior lecturer – University of Debrecen – 2017 - present |
| Research and development projects over the last 5 years | Name of project or research focus: GINOP-2.3.2-15-2016-00008
Period and any other information: 2016 – 2020
Partners, if applicable: -
Amount of financing: -
Name of project or research focus: TÁMOP-4.2.2.A-11/1/KONV
Period and any other information: 2013 –2015
Partners, if applicable: -
Amount of financing: - |
| Important publications over the last 5 years | Selected recent publications from a total of approx. (give total number): 20
Author(s): P. P. Fehér, H. Horváth, F. Joó, M. Purgel
Title: DFT Study on the Mechanism of Hydrogen Storage Based on the Formate-Bicarbonate Equilibrium Catalyzed by an Ir-NHC Complex: An Elusive Intramolecular C–H Activation
Any other information: Publisher, place of publication, date of publication or |

Author(s): N. Marozsán, H. Horváth, É. Kováts, A. Udvardy, A. Erdei, M. Purgel, F. Joó
Title: Catalytic racemization of secondary alcohols with new (arene)Ru(II)-NHC and (arene)Ru(II)-NHC-tertiary phosphine complexes
Any other information:

Author(s): T. Fodor, I. Banyai, A. Benyei, C. Platas-Iglesias, M. Purgel, G.L. Horvath, L. Zekany, G. Tircso, I. Toth
Title: An Extraordinarily Robust Macrocyclic Complex
Any other information:

Publisher, place of publication, date of publication or name of periodical, volume, issue, page numbers: ACS, Inorg. Chem. 2015, 54:(11), 5426-5437

Author(s): P. P. Fehér, F. Joó, M. Purgel
Title: Performance of exchange-correlation functionals on describing ground state geometries and excitations of Alizarin Red S: Effect of complexation and degree of deprotonation
Any other information:

Publisher, place of publication, date of publication or name of periodical, volume, issue, page numbers: Elsevier, Comp. Theor. Chem. 2014, 1045, 113-122.

Name	Dávid Rácz, PhD
Position | Assistant Professor
Academic career | -

doctoral qualification: PhD, University of Debrecen, Hungary, 2015
Doctorate, subject: University of Debrecen, Synthesis and characterization of light-emitting compounds
Undergraduate degree, subject: Chemistry MSc
Qualification: Chemist, 2010
| Employment | Teaching Assistant, University of Debrecen, Department of Applied Chemistry 2013-2017
Assistant Professor, University of Debrecen, Department of Applied Chemistry 2017- |
|---|---|
| Research and development projects over the last 5 years | **Name of projects:**
participant in GINOP-2.3.2-15-2016-00041, EU project: Regional Material Science Excellence Workshop - Research Program and Infrastructure
Period: 2016-
participant in TÁMOP-4.2.2.A-11/1/KONV-2012-0036, EU project: Intelligent Functional Materials: Their mechanical, thermal, electromagnetic, optical properties and their applications,
Period: 2013-2015
participant in NKFI K-116465, Hungarian project: Synthesis and characterization of smart fluorescent polymers
Period: 2016-
| Industry collaborations over the last 5 years | - |
| Patents and proprietary rights | - |
| Important publications over the last 5 years | **Selected recent publications from a total of approx. 11**
Authors: Miklós Nagy, Dávid Rácz, Zsolt László Nagy, Péter Pál Fehér, József Kalmár, István Fábián, Alexandra Kiss, Miklós Zsuga, Sándor Kéki
Title: Solvatochromic isocyanonaphthalene dyes as ligands for silver (I) complexes, their applicability in silver (I) detection and background reduction in biolabelling
Sensors and Actuators B: Chemical, **255**, 2555-2567 (2018)
Authors: Miklós Nagy, Dávid Rácz, Zsolt László Nagy, Tibor Nagy, Péter Pál Fehér, Mihály Purgel, Miklós Zsuga, Sándor Kéki
Title: An acrylated isocyanonaphthalene based solvatochromic click reagent: Optical and biolabeling properties and quantum chemical modeling.
Dyes and Pigments, **133**, 445-457 (2016)
Authors: Miklós Nagy, Dávid Rácz, Sándor Lajos Kovács, László Lázár, Péter Pál Fehér, Mihály Purgel, Miklós
<table>
<thead>
<tr>
<th>Name</th>
<th>Károly Teperics PhD</th>
</tr>
</thead>
</table>
| Position | Senior lecturer, in charge of the following courses:
| | History and Structure of the EU |
| Academic career | Senior lecturer (UD, Department of Social Geography and Regional Development Planning, 2002) |
| | doctoral qualification: PhD, University of Debrecen, Hungary, 2002
| | Doctorate, subject: Labour market situation of the diploma holders in Hajdú-Bihar county: the impact of the University of Debrecen on the human resources. - University of Debrecen, 2002
| Employment | assistant professor – Department of Social Geography and Regional Development Planning, University of |

Activities in specialist bodies over the last 5 years

Title: New blue light-emitting isocyanobiphenyl based fluorophores: Their solvatochromic and biolabeling properties

Authors: Miklós Nagy, Dávid Rácz, László Lázár, Mihály Purgel, Tamás Ditrói, Miklós Zsuga, Sándor Kéki
Title: Solvatochromic study of highly fluorescent alkylated-isocyanonaphthalenes, their pi-stacking, hydrogen bonding complexation and quenching with pyridine.

Authors: Dávid Rácz, Miklós Nagy, Attila Mándi, Miklós Zsuga, Sándor Kéki
Title: Solvatochromic properties of a new isocyanonaphthalene based fluorophore
| Research and development projects over the last 5 years | Name of project or research focus: HURO/1001/184/2.3.1. “Cross Border Doctoral Programs Consortium”.
Period and any other information: 2012-2013
Partners, if applicable:
Amount of financing: |
| --- | --- |
| Name of project or research focus: OTKA K-101867 “LeaRn: Tanuló régión Magyarországon: Az elmélettől a valóságig”. [“LeaRn: Learning regions in Hungary: from theory to reality”].
Period and any other information: 2012-2015
Partners, if applicable:
Amount of financing: |
| Name of project or research focus: MTA-TpKP. “MTA-SZTE Geography Methodology Research Group”.
Period and any other information: 2016-2020
Partners, if applicable:
Amount of financing: |
| Industry collaborations over the last 5 years | Project title: -
Partners: - |
| Patents and proprietary rights | Title (Year) - |
| Important publications over the last 5 years | Selected recent publications from a total of approx. (give total number): 44
Author(s): Károly TEPERICS, Klára CZIMRE, Sándor MÁRTON
Title: A tanulóvárosok és régiók megjelenése és társadalmi-gazdasági mutatókkal való kapcsolata Magyarországon.
Any other information:
Publisher, place of publication, date of publication or name of periodical, volume, issue, page numbers: EDUCATIO 25:(2) pp. 245-259. (2016)
Author(s): Tamás KOZMA, Károly TEPERICS |
<p>| Activities in specialist bodies over the last 5 years | Organisation - Role – Period Membership without a specific role need not be mentioned. |</p>
<table>
<thead>
<tr>
<th>Name</th>
<th>Zsolt Tiba PhD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Position</td>
<td>College Professor, in charge of Mechanical Engineering BSc</td>
</tr>
</tbody>
</table>
| Academic career | Head of Department (UD, Department of Mechanical Engineering 2007-2013)
 Habilitation (UD, 2007) |
| | doctoral qualification: PhD, Szent István University, Hungary, 1999
 Doctorate, subject: Walterscheid GmbH, Germany, Drivetrain optimization, 1997
 Undergraduate degree, subject: Mechanical Engineering MSc
| Employment | Machine Constructor - DEFÉM Ltd. – 1989
 Assistant lecturer-college professor – 1989-
 Researcher – Walterscheid GmbH -1997 (12 month)
 Visiting Professor – TH Köln/University of Applied Sciences 1999, 3 months DAAD scholarship |
| Research and development projects over the last 5 years | Name of project or research focus: GOP-1.1.1-11-2012-0617, EU project: Developing garbage truck driven by electric motor
 Period and any other information: 2013-2014
 Partners, if applicable:
 Amount of financing: |
| | Name of project or research focus: TÁMOP-4.1.1.F-13/1-2013-0004, EU project: Developing the practice oriented training in the mechanical engineering field.
 Period and any other information: 2014-2015
 Partners, if applicable:
 Amount of financing: |
| | Name of project or research focus: EFOP-3.5.2-17-2017-00001, EU project: Innovative methods in the engineering training.
 Period and any other information: 2017-2018
 Partners, if applicable:
 Amount of financing: |
<p>| Industry collaborations over the period | Project title: GOP-1.1.1-11-2012-0617 EU project: |</p>
<table>
<thead>
<tr>
<th>Important publications over the last 5 years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title: Mechanical design of a methatronics system, Laboratory handbook</td>
</tr>
<tr>
<td>Author(s): Zsolt TIBA, Géza HUSI</td>
</tr>
<tr>
<td>Publisher, place of publication, date of publication or name of periodical, volume, issue, page numbers: University of Debrecen, 2012. ISBN: 9789634735250, p.n.: 107</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Patents and proprietary rights</th>
<th>Title (Year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selected recent publications from a total of approx. (give total number): 20</td>
<td></td>
</tr>
<tr>
<td>Author(s): Zsolt TIBA</td>
<td></td>
</tr>
<tr>
<td>Title: Machine drawing</td>
<td></td>
</tr>
<tr>
<td>Publisher, place of publication, date of publication or name of periodical, volume, issue, page numbers: UD, 2013. ISBN: 9789633180785, p.n.: 131</td>
<td></td>
</tr>
</tbody>
</table>

| Author(s): Zsolt TIBA |
| Title: Drivetrain Optimization |

| Author(s): Zsolt TIBA |
| Title: Basic Constructions of Machine Design |
| Publisher, place of publication, date of publication or name of periodical, volume, issue, page numbers: Lambert Academic Publishing, 2017., ISBN: 9783330346499, p.n.: 294 |
Activities in specialist bodies over the last 5 years

Organisation - Role – Period
Membership without a specific role need not be mentioned.

Name
Balázs Ujvári

Position
Assistant professor

Academic career
- **PhD physics, University of Debrecen, 2013**
- **BA Hungarian Language and Literature, University of Debrecen, 2013**
- **MSc Economics, University of Debrecen, 2007**
- **BSc Computer Science, University of Debrecen, 2006**
- **MSc Physics, University of Debrecen, 2000**

Employment

<table>
<thead>
<tr>
<th>Position</th>
<th>Organisation</th>
<th>Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assistant professor</td>
<td>University of Debrecen</td>
<td>2014 -</td>
</tr>
<tr>
<td>Assistant lecturer</td>
<td>University of Debrecen</td>
<td>2008-2014</td>
</tr>
<tr>
<td>Scientific associate</td>
<td>ATOMKI</td>
<td>2007-2008</td>
</tr>
<tr>
<td>Database programmer</td>
<td>NI Hungary</td>
<td>2004 - 2010</td>
</tr>
<tr>
<td>Position</td>
<td>Employer</td>
<td>Period</td>
</tr>
</tbody>
</table>

Research and development projects over the last 5 years

- **CERN-CMS alignment 2008-**
- **CERN-CMS DT HV development 2017-**
- **BNL-PHENIX data analysis 2014-**
- **BNL-sPHENIX SiPM tester 2016-**

Industry collaborations over the last 5 years

Patents and proprietary rights

Important publications over the last 5 years

- **Selected recent publications from a total of approx. (give total number): 900**
 Motion of CMS detector and mechanical structures during
Magnet Cycles and Stability Periods from 2008 to 2013 as observed by the Link Alignment System

NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT 813: pp. 36-55. (2016)

Searches for a heavy scalar boson H decaying to a pair of 125 GeV Higgs bosons hh or for a heavy pseudoscalar boson A decaying to Zh, in the final states with $h \rightarrow \tau \tau$

Particle physics education in Hungary

PHENIX results on low pT direct photons in Au + Au collisions

Weighing the Neutrino

<table>
<thead>
<tr>
<th>Activities in specialist bodies over the last 5 years</th>
<th>CERN – Knowledge Transfer Office – Hungarian deputy, 2017-</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Marietta Vágvölgyi Dr. Tóth, PhD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Position</td>
<td>Associate Professor</td>
</tr>
<tr>
<td>Academic career</td>
<td>Habilitation (University of Debrecen, 2018)</td>
</tr>
<tr>
<td>Employment</td>
<td>Associate professor, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Debrecen, 2018. 09. 01. –</td>
</tr>
<tr>
<td>PhD, University of Debrecen, Hungary, 2002</td>
<td>PhD, subject: Access to C-glycosyl-imine type compounds and C-glycosyl-methylene carbenes and investigation of their properties</td>
</tr>
<tr>
<td>PhD, subject: chemistry - chemistry teacher – special translator in English, MSc, Kossuth Lajos University, Debrecen, Hungary, 1998</td>
<td>Undergraduate degree, subject: chemistry - chemistry teacher – special translator in English, MSc, Kossuth Lajos University, Debrecen, Hungary, 1998</td>
</tr>
</tbody>
</table>
Senior lecturer, *Faculty of Pharmacy, University of Debrecen*, 2012. 02. 01. – 2018. 08. 31.
Senior lecturer, *Organic Chemistry Department, University of Debrecen*, 2008. 10. 01. – 2012. 01. 31.

Research and development projects over the last 5 years

<table>
<thead>
<tr>
<th>Name of project or research focus</th>
<th>Period and any other information</th>
<th>Amount of financing</th>
</tr>
</thead>
<tbody>
<tr>
<td>GINOP-2.3.2-15-2016-00008, supported by the EU co-financed by the European Regional Development Fund: Chemistry for better life: strategic R&D center at the University of Debrecen, Chemistry of carbohydrates and heterocycles subproject. (Participant)</td>
<td>2016-2020</td>
<td>1 983 995 445 Ft</td>
</tr>
<tr>
<td>Research Project of University of Debrecen, 5N5XBTDDOMA320, supported by University of Debrecen, Cross-coupling of and glycoenzyme inhibition by hydrazones of monosaccharides (Principal investigator)</td>
<td>2015-2016</td>
<td>9.292.900 Ft</td>
</tr>
<tr>
<td>Grant OTKA, K-109450, supported by the National Research, Development and Innovation Office of Hungary (Hungarian Scientific Research Fund): New transformations of monosaccharide derivatives at and</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Industry collaborations over the last 5 years

Project title: -
Partners: -

László Somsák, Éva Bokor, Marietta Vágvölgyiné Tóth, László Juhász, Katalin Czifrák, Bálint Kónya, Sándor Kun, András Páhi, Béla Szőcs, Gergely Varga, Pál Gergely, Tibor Docsza, Lászlóné Kóder, Károlyné Nagy

Title: Glycogen phosphorylase inhibitors / Glikogén foszforiláz inhibitorok
P1100602/P1200475, 2012, Hungarian patent application

Title: Preparation of imidazolyl and triazolyl glycosides as glycogen phosphorylase inhibitors and antitumor agents.
WO2013061105A2, 2013, International patent application.

Patents and proprietary rights

<table>
<thead>
<tr>
<th>Title</th>
<th>Author(s)</th>
<th>Publication Information</th>
</tr>
</thead>
</table>

Important publications over the last 5 years

Selected recent publications from a total of approx. (give total number): 33

Author(s): L. Somsák, É. Bokor, B. Czibere, K. Czifrák, Cs. Koppány, L. Kulcsár, S. Kun, E. Szilágyi, M. Tóth, T. Docsza, P. Gergely
Title: Synthesis of C-xylopyranosyl- and xylopyranosylidene-spiro-heterocycles as potential inhibitors of glycogen phosphorylase

Any other information:
Publisher, place of publication, date of publication or name of periodical, volume, issue, page numbers:
Carbohydr. Res. 399 (2014) 38-48

Author(s): S. Kun, É. Bokor, G. Varga, B. Szőcs, A. Páhi, K. Czifrák, M. Tóth, L. Juhász, T. Docsza, P. Gergely, L. Somsák
Title: New synthesis of 3-(β-D-glucopyranosyl)-5-substituted-1,2,4-triazoles, nanomolar inhibitors of glycogen phosphorylase

Any other information:
Publisher, place of publication, date of publication or name of periodical, volume, issue, page numbers:

Author(s): B. Szőcs, É. Bokor, K. E. Szabó, A. Kiss-
Szikszai, M. Tóth, L. Somsák
Title: Synthesis of 5-aryl-3-C-glycosyl- and unsymmetrical 3,5-diaryl-1,2,4-triazoles from alkylidene-amidrazones
Any other information:
Publisher, place of publication, date of publication or name of periodical, volume, issue, page numbers: RSC Advances 54 (2015) 43620-43629

Author(s): L. Lázár, M. Csávás, M. Tóth, L. Somsák, A. Borbás
Title: Thio-click approach to the synthesis of stable glycomimetics
Any other information:
Publisher, place of publication, date of publication or name of periodical, volume, issue, page numbers: Chem. Pap. 69 (2015) 889-895

Title: C-Glycopyranosyl Arenes and Hetarenes: Synthetic Methods and Bioactivity Focused on Antidiabetic Potential
Any other information:
Publisher, place of publication, date of publication or name of periodical, volume, issue, page numbers: Chem. Rev. 117 (2017) 1687-1764

Author(s): T. Kaszás, M. Tóth, S. Kun, L. Somsák
Title: Coupling of anhydro-aldose tosylhydrazones with phenols and carboxylic acids: A new route for the synthesis of C-β-D-glycopyranosylmethyl ethers and esters
Any other information:
Publisher, place of publication, date of publication or name of periodical, volume, issue, page numbers: RSC Advances 7 (2017) 10454-10462

Author(s): T. Kaszás, M. Tóth, L. Somsák
Title: New synthesis of C-β-D-glycopyranosylmethyl sulfides by metal-free coupling of anhydro-aldose tosylhydrazones with thiols
Any other information:
Publisher, place of publication, date of publication or name of periodical, volume, issue, page numbers: New J. Chem. 41 (2017) 13871-13880
| Author(s): T. Kaszás, A. Ivanov, M. Tóth, P. Ehlers, P. Langer, L. Somsák |
| Title: Pd-catalyzed coupling reactions of anhydro-aldose tosylhydrazones with aryl bromides to produce substituted exo-glycals |
| Any other information: Publisher, place of publication, date of publication or name of periodical, volume, issue, page numbers: Carbohydr. Res. (2018) DOI: 10.1016/j.carres.2018.02.010 |

| Activities in specialist bodies over the last 5 years |
| Organisation - Role – Period |
| Chemistry BSc State Exam Committee – Secretary – 2008 – 2013, 2017 – |